This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

ദ്വിപദ സിദ്ധാന്തം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
വരി 15: വരി 15:
-
  ഘാതം ി ആയിട്ടുള്ള ഒരു ദ്വിപദത്തിന്റെ വിപുലീകരണത്തില്‍ ി + 1 പദങ്ങള്‍ ഉണ്ടാവും. ഒരു ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിന്റെയും വിപുലീകരണത്തില്‍ വരുന്ന ഗുണാങ്ക
+
ഘാതം n ആയിട്ടുള്ള ഒരു ദ്വിപദത്തിന്റെ വിപുലീകരണത്തില്‍ n + 1 പദങ്ങള്‍ ഉണ്ടാവും. ഒരു ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിന്റെയും വിപുലീകരണത്തില്‍ വരുന്ന ഗുണാങ്കങ്ങളെ <sub>n</sub>C<sub>r</sub> ദ്വിപദ ഗുണാങ്കങ്ങള്‍ (binomial coefficients) എന്നു വിളിക്കുന്നു.
-
ങ്ങളെ ിഇൃ ദ്വിപദ ഗുണാങ്കങ്ങള്‍ (യശിീാശമഹ രീലളളശരശലി) എന്നു
+
ഇവിടെ n എന്നത് ഒരു ധനപൂര്‍ണസംഖ്യയോ പൂജ്യമോ ആയിരിക്കാം. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ പ്രയോജനങ്ങളില്‍ ഏറെയും സിദ്ധിക്കുന്നത് ഈ ഗുണാങ്കങ്ങളുടെ സവിശേഷതകള്‍ മൂലമാണ്.<sub>n</sub>C<sub>r</sub>എന്ന ഗുണാങ്കം,n വ്യത്യസ്ത വസ്തുക്കളുടെ സഞ്ചയത്തില്‍ r വസ്തുക്കളുടെ ക്രമീകരണം (r<n) സൂചിപ്പിക്കുന്ന ക്രമസഞ്ചയം (combination) ആണ്
-
വിളിക്കുന്നു.
+
   
 +
   
-
  ഇവിടെ ി എന്നത് ഒരു ധനപൂര്‍ണസംഖ്യയോ പൂജ്യമോ ആയിരിക്കാം. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ പ്രയോജനങ്ങളില്‍ ഏറെയും സിദ്ധിക്കുന്നത് ഈ ഗുണാങ്കങ്ങളുടെ സവിശേഷതകള്‍ മൂലമാണ്. ിഇൃ എന്ന ഗുണാങ്കം, ി വ്യത്യസ്ത വസ്തുക്കളുടെ സഞ്ചയത്തില്‍ ൃ വസ്തുക്കളുടെ ക്രമീകരണം (ൃ < ി) സൂചിപ്പിക്കുന്ന ക്രമസഞ്ചയം (രീായശിമശീിേ) ആണ്
+
C(n,r) ,C  എന്നീ പ്രതീകങ്ങളുപയോഗിച്ചും ദ്വിപദ ഗുണാങ്കത്തെ സൂചിപ്പിക്കാവുന്നതാണ്.  
-
      ിഇൃ .
+
ഏതൊരു ധനപൂര്‍ണസംഖ്യയ്ക്കും ബാധകമായ വിധത്തില്‍ ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങള്‍ കണ്ടുപിടിക്കുന്നതിനുള്ള ഒരു രീതി ഫ്രഞ്ച് ഗണിതവിജ്ഞാനി ബ്ലേസ് പാസ്കല്‍ (Blaise Pascal : 1623-62)  ആവിഷ്കരിച്ചിട്ടുണ്ട്. പാസ്കലിനും മുമ്പു ജീവിച്ചിരുന്ന ഇറ്റാലിയിന്‍ ഗണിതശാസ്ത്രജ്ഞനായ ടാര്‍ട്ടാലിയ നിക്കോളോ ഫൊണ്ടാന  (Tartaglia  Nicolo Fontana : 1500 ? - 57) കണ്ടെത്തിയ സംഖ്യാചതുരത്തിലും ഈ സംഖ്യാക്രമീകരണം കാണപ്പെടുന്നുണ്ട്. പ്രാചീന ഭാരതത്തില്‍ ജീവിച്ചിരുന്ന പിംഗളന്റെ ഗ്രന്ഥങ്ങളിലും ഈദൃശ സംഖ്യാക്രമങ്ങള്‍ കാണാവുന്നതാണ്. ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങളെ പാസ്കല്‍ ക്രമീകരിച്ചിരിക്കുന്നത് ത്രികോണാകൃതിയിലാണ്. ഇത് പാസ്കല്‍ ത്രികോണം (Pascal's triangle) എന്ന് അറിയപ്പെടുന്നു.  
-
   
+
  n = 0,          1
-
      ിഇ1
+
  n = 1,   1        1
-
      ിഇ2 ,        ിഇ3     
+
  n = 2,         1       2        1
-
   , ഇ(ി, ൃ),  ഇ  എന്നീ പ്രതീകങ്ങളുപയോഗിച്ചും ദ്വിപദ ഗുണാങ്കത്തെ സൂചിപ്പിക്കാവുന്നതാണ്.
+
   n = 3,     1        3        3          1  
-
   ഏതൊരു ധനപൂര്‍ണസംഖ്യയ്ക്കും ബാധകമായ വിധത്തില്‍ ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങള്‍ കണ്ടുപിടിക്കുന്നതിനുള്ള ഒരു രീതി ഫ്രഞ്ച് ഗണിതവിജ്ഞാനി ബ്ളേസ് പാസ്കല്‍ (ആഹമശലെ ജമരെമഹ : 1623-62)  ആവിഷ്കരിച്ചി
+
   n = 4, 1      4      6        4          1
-
ട്ടുണ്ട്. പാസ്കലിനും മുമ്പു ജീവിച്ചിരുന്ന ഇറ്റാലിയിന്‍ ഗണിതശാസ്ത്രജ്ഞനായ ടാര്‍ട്ടാലിയ നിക്കോളോ ഫൊണ്ടാന  (ഠമൃമേഴഹശമ ചശരരീഹീ എീിമിേമ : 1500 ? - 57) കണ്ടെത്തിയ സംഖ്യാചതുരത്തിലും ഈ സംഖ്യാക്രമീകരണം കാണപ്പെടുന്നുണ്ട്. പ്രാചീന ഭാരതത്തില്‍ ജീവിച്ചിരുന്ന പിംഗളന്റെ ഗ്രന്ഥങ്ങളിലും ഈദൃശ സംഖ്യാക്രമങ്ങള്‍ കാണാവുന്നതാണ്. ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങളെ പാസ്കല്‍ ക്രമീകരിച്ചിരിക്കുന്നത് ത്രികോണാകൃതിയിലാണ്. ഇത് പാസ്കല്‍ ത്രികോണം (ജമരെമഹ' ൃശമിഴഹല) എന്ന് അറിയപ്പെടുന്നു.
+
  n = 5,      1      5      10      10          5        1
-
 
+
-
    ി = 0,          1
+
-
 
+
-
    ി = 1,   1        1
+
-
 
+
-
    ി = 2,         1        2        1
+
-
 
+
-
    ി = 3,     1        3        3          1 
+
-
 
+
-
    ി = 4, 1      4      6        4          1
+
-
 
+
-
    ി = 5,      1      5      10      10          5        1
+
     .........................................................................
     .........................................................................
വരി 55: വരി 44:
     .........................................................................
     .........................................................................
-
  ഓരോ വരിയിലുമുള്ള ആദ്യത്തെയും അവസാനത്തെയും അക്കം 1 ആണ്. തുടര്‍ന്നുള്ള ഓരോ സംഖ്യയും തൊട്ടുമുകളിലുള്ള വരിയിലെ രണ്ടു സംഖ്യകളുടെ തുകയാണ്.
+
ഓരോ വരിയിലുമുള്ള ആദ്യത്തെയും അവസാനത്തെയും അക്കം 1 ആണ്. തുടര്‍ന്നുള്ള ഓരോ സംഖ്യയും തൊട്ടുമുകളിലുള്ള വരിയിലെ രണ്ടു സംഖ്യകളുടെ തുകയാണ്.
-
 
+
-
  അനുയോജ്യമായ വ്യവസ്ഥകളുടെ അടിസ്ഥാനത്തില്‍, ി ഒരു ധനപൂര്‍ണസംഖ്യ അല്ലെങ്കിലും ദ്വിപദ സൂത്രവാക്യം ആവിഷ്കരിക്കാവുന്നതാണ്. ി ഭിന്നസംഖ്യയോ ഋണസംഖ്യയോ ആയാല്‍പ്പോലും ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിനും വിപുലീകരണം നല്കാമെന്നും ന്യൂട്ടണ്‍ കണ്ടെത്തി. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ  ഈ സാമാന്യവത്കരണത്തിലൂടെ അനന്തശ്രേണി
+
-
 
+
-
യിലുള്ള  ഒരു  വിപുലീ
+
-
കരണമാണ് ലഭിക്കുന്നത്. ന്യൂട്ടണ്‍  ആവിഷ്കരിച്ച ഈ ശ്രേണി ദ്വിപദ ശ്രേണി (യശിീാശമഹ ലൃെശല) എന്നറിയപ്പെടുന്നു. (+ ്യ)ി = ഃി + ിഇ1 ഃി1 ്യ + ിഇ2 ഃ ി2 ്യ2 + ...
+
അനുയോജ്യമായ വ്യവസ്ഥകളുടെ അടിസ്ഥാനത്തില്‍, n ഒരു ധനപൂര്‍ണസംഖ്യ അല്ലെങ്കിലും ദ്വിപദ സൂത്രവാക്യം ആവിഷ്കരിക്കാവുന്നതാണ്. n ഭിന്നസംഖ്യയോ ഋണസംഖ്യയോ ആയാല്‍ പ്പോലും ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിനും വിപുലീകരണം നല്കാമെന്നും ന്യൂട്ടണ്‍ കണ്ടെത്തി. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ  ഈ സാമാന്യവത്കരണത്തിലൂടെ അനന്തശ്രേണിയിലുള്ള  ഒരു  വിപുലീ
 +
കരണമാണ് ലഭിക്കുന്നത്. ന്യൂട്ടണ്‍  ആവിഷ്കരിച്ച ഈ ശ്രേണി ദ്വിപദ ശ്രേണി (binomial series) എന്നറിയപ്പെടുന്നു.  
 +
(x+y)<sup>n</sup>=x<sup>n</sup>+
 +
<sub>n</sub>C<sub>1</sub>x<sup>n-1</sup>y+
 +
<sub>n</sub>C<sub>2</sub>x<sup>n-2</sup>y<sup>2</sup>+
 +
........
-
  ഈയിനം ശ്രേണികളുടെ കേന്ദ്ര അഭിസരക സ്വഭാവത്തെ നോര്‍വീജിയന്‍ ഗണിതശാസ്ത്രജ്ഞനായ നീല്‍സ് ഹെന്റിക് ഏബല്‍ (ചലശഹ ഒലിൃശസ അയലഹ : 1802-29) ആഴത്തിലുള്ള പഠനത്തിലൂടെ സ്ഥാപിച്ചിട്ടുണ്ട്. വിപുലീകരണത്തില്‍ ദ്വിപദ ഗുണാങ്കങ്ങളുടെ ഗണം രൂപം കൊടുക്കുന്ന വിതരണങ്ങള്‍ (റശൃശയൌശീിേ) സാംഖ്യിക മേഖലയില്‍ പ്രത്യേകിച്ച് സംഭാവ്യതാ സിദ്ധാന്ത(ജൃീയമയശഹശ്യ വേല്യീൃ)ത്തില്‍ അടിസ്ഥാനപരമായ പങ്കു വഹിക്കുന്നു.
+
ഈയിനം ശ്രേണികളുടെ കേന്ദ്ര അഭിസരക സ്വഭാവത്തെ നോര്‍വീജിയന്‍ ഗണിതശാസ്ത്രജ്ഞനായ നീല്‍സ് ഹെന്റിക് ഏബല്‍ (Neils Hentrik Abel : 1802-29) ആഴത്തിലുള്ള പഠനത്തിലൂടെ സ്ഥാപിച്ചിട്ടുണ്ട്. വിപുലീകരണത്തില്‍ ദ്വിപദ ഗുണാങ്കങ്ങളുടെ ഗണം രൂപം കൊടുക്കുന്ന വിതരണങ്ങള്‍ (distributions) സാംഖ്യിക മേഖലയില്‍ പ്രത്യേകിച്ച് സംഭാവ്യതാ സിദ്ധാന്ത(Probability theory)ത്തില്‍ അടിസ്ഥാനപരമായ പങ്കു വഹിക്കുന്നു.

10:00, 11 മാര്‍ച്ച് 2009-നു നിലവിലുണ്ടായിരുന്ന രൂപം

ദ്വിപദ സിദ്ധാന്തം

Binomial theorem

ഗണിതശാസ്ത്രത്തിലെ ഒരു പ്രധാന ബീജീയ സര്‍വസമവാക്യം. ഒരു ദ്വിപദ(binomial)ത്തിന്റെ ഏതു ഘാതത്തിന്റെയും വിപുലീകരണത്തിനുള്ള നിയമമാണ് ദ്വിപദ സിദ്ധാന്തം. ദ്വിപദ സൂത്രവാക്യം (binomial formula) എന്നും ഇതറിയപ്പെടുന്നു. ഗണിതം, ഭൗതികം, സാംഖ്യികം എന്നീ വിജ്ഞാനശാഖകളുടെ വിവിധ മേഖലകളില്‍ പ്രയോഗക്ഷമതയുള്ള ഈ സിദ്ധാന്തത്തിന്റെ പൊതുനിയമം ആവിഷ്കരിച്ചത് (1676) ഐസക് ന്യൂട്ടനാണ്; ആദ്യമായി തെളിയിച്ചത് ജേക്കബ് ബര്‍ണോളിയും.

രണ്ടു പദങ്ങള്‍ (terms) മാത്രം ഉള്‍ ക്കൊള്ളുന്ന വ്യഞ്ജകത്തെ (expression) ദ്വിപദം എന്നു പറയുന്നു. ഉദാ. a+b,2x-3y മുതലായവ.

(a+b)n=an+ nC1an-1b +nC2an-2b2 +..........+ nCran-rbr +........+bn


ഘാതം n ആയിട്ടുള്ള ഒരു ദ്വിപദത്തിന്റെ വിപുലീകരണത്തില്‍ n + 1 പദങ്ങള്‍ ഉണ്ടാവും. ഒരു ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിന്റെയും വിപുലീകരണത്തില്‍ വരുന്ന ഗുണാങ്കങ്ങളെ nCr ദ്വിപദ ഗുണാങ്കങ്ങള്‍ (binomial coefficients) എന്നു വിളിക്കുന്നു.

ഇവിടെ n എന്നത് ഒരു ധനപൂര്‍ണസംഖ്യയോ പൂജ്യമോ ആയിരിക്കാം. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ പ്രയോജനങ്ങളില്‍ ഏറെയും സിദ്ധിക്കുന്നത് ഈ ഗുണാങ്കങ്ങളുടെ സവിശേഷതകള്‍ മൂലമാണ്.nCrഎന്ന ഗുണാങ്കം,n വ്യത്യസ്ത വസ്തുക്കളുടെ സഞ്ചയത്തില്‍ r വസ്തുക്കളുടെ ക്രമീകരണം (r<n) സൂചിപ്പിക്കുന്ന ക്രമസഞ്ചയം (combination) ആണ്



C(n,r) ,C എന്നീ പ്രതീകങ്ങളുപയോഗിച്ചും ദ്വിപദ ഗുണാങ്കത്തെ സൂചിപ്പിക്കാവുന്നതാണ്.

ഏതൊരു ധനപൂര്‍ണസംഖ്യയ്ക്കും ബാധകമായ വിധത്തില്‍ ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങള്‍ കണ്ടുപിടിക്കുന്നതിനുള്ള ഒരു രീതി ഫ്രഞ്ച് ഗണിതവിജ്ഞാനി ബ്ലേസ് പാസ്കല്‍ (Blaise Pascal : 1623-62) ആവിഷ്കരിച്ചിട്ടുണ്ട്. പാസ്കലിനും മുമ്പു ജീവിച്ചിരുന്ന ഇറ്റാലിയിന്‍ ഗണിതശാസ്ത്രജ്ഞനായ ടാര്‍ട്ടാലിയ നിക്കോളോ ഫൊണ്ടാന (Tartaglia Nicolo Fontana : 1500 ? - 57) കണ്ടെത്തിയ സംഖ്യാചതുരത്തിലും ഈ സംഖ്യാക്രമീകരണം കാണപ്പെടുന്നുണ്ട്. പ്രാചീന ഭാരതത്തില്‍ ജീവിച്ചിരുന്ന പിംഗളന്റെ ഗ്രന്ഥങ്ങളിലും ഈദൃശ സംഖ്യാക്രമങ്ങള്‍ കാണാവുന്നതാണ്. ദ്വിപദ സിദ്ധാന്തത്തിലെ ഗുണാങ്കങ്ങളെ പാസ്കല്‍ ക്രമീകരിച്ചിരിക്കുന്നത് ത്രികോണാകൃതിയിലാണ്. ഇത് പാസ്കല്‍ ത്രികോണം (Pascal's triangle) എന്ന് അറിയപ്പെടുന്നു.

  n = 0,     		       1
  n = 1, 		  1        1
  n = 2, 	        1        2         1
  n = 3, 	    1        3        3          1  
  n = 4, 	 1       4       6        4          1
  n = 5,       1       5      10       10          5         1
   .........................................................................
   .........................................................................
   .........................................................................

ഓരോ വരിയിലുമുള്ള ആദ്യത്തെയും അവസാനത്തെയും അക്കം 1 ആണ്. തുടര്‍ന്നുള്ള ഓരോ സംഖ്യയും തൊട്ടുമുകളിലുള്ള വരിയിലെ രണ്ടു സംഖ്യകളുടെ തുകയാണ്.

അനുയോജ്യമായ വ്യവസ്ഥകളുടെ അടിസ്ഥാനത്തില്‍, n ഒരു ധനപൂര്‍ണസംഖ്യ അല്ലെങ്കിലും ദ്വിപദ സൂത്രവാക്യം ആവിഷ്കരിക്കാവുന്നതാണ്. n ഭിന്നസംഖ്യയോ ഋണസംഖ്യയോ ആയാല്‍ പ്പോലും ദ്വിപദത്തിന്റെ ഏതു ഘാതത്തിനും വിപുലീകരണം നല്കാമെന്നും ന്യൂട്ടണ്‍ കണ്ടെത്തി. ദ്വിപദ സിദ്ധാന്തത്തിന്റെ ഈ സാമാന്യവത്കരണത്തിലൂടെ അനന്തശ്രേണിയിലുള്ള ഒരു വിപുലീ കരണമാണ് ലഭിക്കുന്നത്. ന്യൂട്ടണ്‍ ആവിഷ്കരിച്ച ഈ ശ്രേണി ദ്വിപദ ശ്രേണി (binomial series) എന്നറിയപ്പെടുന്നു. (x+y)n=xn+ nC1xn-1y+ nC2xn-2y2+ ........

ഈയിനം ശ്രേണികളുടെ കേന്ദ്ര അഭിസരക സ്വഭാവത്തെ നോര്‍വീജിയന്‍ ഗണിതശാസ്ത്രജ്ഞനായ നീല്‍സ് ഹെന്റിക് ഏബല്‍ (Neils Hentrik Abel : 1802-29) ആഴത്തിലുള്ള പഠനത്തിലൂടെ സ്ഥാപിച്ചിട്ടുണ്ട്. വിപുലീകരണത്തില്‍ ദ്വിപദ ഗുണാങ്കങ്ങളുടെ ഗണം രൂപം കൊടുക്കുന്ന വിതരണങ്ങള്‍ (distributions) സാംഖ്യിക മേഖലയില്‍ പ്രത്യേകിച്ച് സംഭാവ്യതാ സിദ്ധാന്ത(Probability theory)ത്തില്‍ അടിസ്ഥാനപരമായ പങ്കു വഹിക്കുന്നു.

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍