This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

ആന്റിമാറ്റർ

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(പുതിയ താള്‍: ==ആന്റിമാറ്റർ== ==Antimatter== സാധാരണ ദ്രവ്യത്തിനു വിപരീതമായ ഗുണവിശേഷങ...)
(ആന്റിമാറ്റർ)
 
(ഇടക്കുള്ള 11 പതിപ്പുകളിലെ മാറ്റങ്ങള്‍ ഇവിടെ കാണിക്കുന്നില്ല.)
വരി 1: വരി 1:
-
==ആന്റിമാറ്റർ==
+
==ആന്റിമാറ്റര്‍==
 +
 
==Antimatter==
==Antimatter==
-
സാധാരണ ദ്രവ്യത്തിനു വിപരീതമായ ഗുണവിശേഷങ്ങള്‍ ഉള്ളതായി വിഭാവനം ചെയ്യപ്പെട്ടിരിക്കുന്ന ദ്രവ്യം. സാധാരണ ദ്രവ്യത്തിന്റെ അണുക്കള്‍ ചില മൗലികകണങ്ങളാൽ (പ്രാട്ടോണ്‍, ന്യൂട്രാണ്‍, ഇലക്‌ട്രാണ്‍) നിർമിക്കപ്പെട്ടവയാണ്‌. ഈ മൗലികകണങ്ങളെ കണ്ടെത്തിയതിൽപ്പിന്നെ, പരീക്ഷണങ്ങളാൽ മറ്റുപല കണങ്ങളുടെയും അസ്‌തിത്വം സ്ഥാപിക്കാന്‍ കഴിഞ്ഞിട്ടുണ്ട്‌.  ഇവയിൽ മിക്കതും അസ്ഥിരങ്ങളാണ്‌; ആയുസ്‌ ഒരു സെക്കന്‍ഡിന്റെ അനേക കോടിയിലൊരംശം വരെയായിരിക്കാം. അവ ക്ഷയിച്ച്‌ ദ്രവ്യ ഘടകങ്ങളായി മാറാറുണ്ട്‌. അവയെ പാർട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ കൃത്രിമമായി സൃഷ്‌ടിക്കാനും കഴിയും.
+
[[ചിത്രം:anderson.png|thumb|സി ഡി  ആന്‍ഡെഴ്സന്‍]] [[ചിത്രം:paul dirac.png|thumb|പോള്‍  ഡിറാക് ]]
-
ദ്രവ്യത്തിന്റെ അടിസ്ഥാനഘടകങ്ങളായ പ്രാട്ടോണ്‍, ന്യൂട്രാണ്‍, ഇലക്‌ട്രാണ്‍ തുടങ്ങിയ കണങ്ങള്‍ക്കു സമാനമായി, അവയ്‌ക്കു തുല്യം ദ്രവ്യമാ(mass)നവും, ചക്രണ(spin)വും എന്നാൽ, വിപരീത ചാർജൂകളും ഉള്ള കണങ്ങള്‍ ഉണ്ട്‌. ഇവ അവയുടെ "പ്രതികണങ്ങള്‍' (antiparticles)  എന്നറിയപ്പെടുന്നു. ഇലക്‌ട്രാണിന്റെ പ്രതികണമാണ്‌ പോസിട്രാണ്‍ (Positron). രണ്ടും സ്‌പിന്‍ മ്മ കണങ്ങളാണ്‌. രണ്ടിന്റെയും ദ്രവ്യമാനം തുല്യവുമാണ്‌. വൈദ്യുത ചാർജ്‌, ഇലക്‌ട്രാണിന്റേത്‌ നെഗറ്റീവും പോസിട്രാണിന്റേത്‌ പോസിറ്റീവും ആകുന്നു.
+
സാധാരണ ദ്രവ്യത്തിനു വിപരീതമായ ഗുണവിശേഷങ്ങള്‍ ഉള്ളതായി വിഭാവനം ചെയ്യപ്പെട്ടിരിക്കുന്ന ദ്രവ്യം. സാധാരണ ദ്രവ്യത്തിന്റെ അണുക്കള്‍ ചില മൗലികകണങ്ങളാല്‍ (പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍) നിര്‍മിക്കപ്പെട്ടവയാണ്‌. ഈ മൗലികകണങ്ങളെ കണ്ടെത്തിയതില്‍പ്പിന്നെ, പരീക്ഷണങ്ങളാല്‍ മറ്റുപല കണങ്ങളുടെയും അസ്‌തിത്വം സ്ഥാപിക്കാന്‍ കഴിഞ്ഞിട്ടുണ്ട്‌.  ഇവയില്‍ മിക്കതും അസ്ഥിരങ്ങളാണ്‌; ആയുസ്‌ ഒരു സെക്കന്‍ഡിന്റെ അനേക കോടിയിലൊരംശം വരെയായിരിക്കാം. അവ ക്ഷയിച്ച്‌ ദ്രവ്യ ഘടകങ്ങളായി മാറാറുണ്ട്‌. അവയെ പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ കൃത്രിമമായി സൃഷ്‌ടിക്കാനും കഴിയും.
-
പ്രാട്ടോണിന്റെയും ന്യൂട്രാണിന്റെയും പ്രതികണങ്ങള്‍ യഥാക്രമം ആന്റിപ്രാട്ടോണും ആന്റിന്യൂട്രാണും ആകുന്നു.
+
 
-
പ്രാട്ടോണ്‍, ന്യൂട്രാണ്‍, ഇലക്‌ട്രാണ്‍ എന്നീ കണങ്ങള്‍ സംഘടിച്ച്‌ സാധാരണ ദ്രവ്യം ഉണ്ടാകുന്നതുപോലെ അവയുടെ പ്രതികണങ്ങളായ ആന്റിപ്രാട്ടോണ്‍, ആന്റിന്യൂട്രാണ്‍, പോസിട്രാണ്‍ എന്നിവ ചേർത്ത്‌ പ്രതിദ്രവ്യ(antimatter)വും ഉണ്ടാക്കാം. ആന്റിമാറ്ററിന്റേതുമാത്രമായ ഒരു പ്രത്യേക പ്രപഞ്ചം തന്നെ കണ്ടേക്കാമെന്ന്‌ അഭ്യൂഹം മുമ്പുണ്ടായിരുന്നെങ്കിലും ഇപ്പോള്‍ അതു ഗൗരവമായി പരിഗണിക്കപ്പെടുന്നില്ല. സാധാരണ ദ്രവ്യവും പ്രതിദ്രവ്യവും കൂട്ടിമുട്ടിയാൽ രണ്ടും നാമാവശേഷമായി ഊർജകണങ്ങള്‍ (ഗാമാ ഫോട്ടോണുകള്‍) ആയി മാറുന്നു.
+
ദ്രവ്യത്തിന്റെ അടിസ്ഥാനഘടകങ്ങളായ പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍ തുടങ്ങിയ കണങ്ങള്‍ക്കു സമാനമായി, അവയ്‌ക്കു തുല്യം ദ്രവ്യമാ(mass)നവും, ചക്രണ(spin)വും എന്നാല്‍, വിപരീത ചാര്‍ജൂകളും ഉള്ള കണങ്ങള്‍ ഉണ്ട്‌. ഇവ അവയുടെ "പ്രതികണങ്ങള്‍' (antiparticles)  എന്നറിയപ്പെടുന്നു. ഇലക്‌ട്രോണിന്റെ പ്രതികണമാണ്‌ പോസിട്രോണ്‍ (Positron). രണ്ടും സ്‌പിന്‍ ½ കണങ്ങളാണ്‌. രണ്ടിന്റെയും ദ്രവ്യമാനം തുല്യവുമാണ്‌. വൈദ്യുത ചാര്‍ജ്‌, ഇലക്‌ട്രോണിന്റേത്‌ നെഗറ്റീവും പോസിട്രോണിന്റേത്‌ പോസിറ്റീവും ആകുന്നു.
 +
 
 +
പ്രോട്ടോണിന്റെയും ന്യൂട്രോണിന്റെയും പ്രതികണങ്ങള്‍ യഥാക്രമം ആന്റിപ്രോട്ടോണും ആന്റിന്യൂട്രോണും ആകുന്നു.
 +
 
 +
പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍ എന്നീ കണങ്ങള്‍ സംഘടിച്ച്‌ സാധാരണ ദ്രവ്യം ഉണ്ടാകുന്നതുപോലെ അവയുടെ പ്രതികണങ്ങളായ ആന്റിപ്രോട്ടോണ്‍, ആന്റിന്യൂട്രോണ്‍, പോസിട്രോണ്‍ എന്നിവ ചേര്‍ത്ത്‌ പ്രതിദ്രവ്യ(antimatter)വും ഉണ്ടാക്കാം. ആന്റിമാറ്ററിന്റേതുമാത്രമായ ഒരു പ്രത്യേക പ്രപഞ്ചം തന്നെ കണ്ടേക്കാമെന്ന്‌ അഭ്യൂഹം മുമ്പുണ്ടായിരുന്നെങ്കിലും ഇപ്പോള്‍ അതു ഗൗരവമായി പരിഗണിക്കപ്പെടുന്നില്ല. സാധാരണ ദ്രവ്യവും പ്രതിദ്രവ്യവും കൂട്ടിമുട്ടിയാല്‍ രണ്ടും നാമാവശേഷമായി ഊര്‍ജകണങ്ങള്‍ (ഗാമാ ഫോട്ടോണുകള്‍) ആയി മാറുന്നു.
 +
 
 +
'''കണങ്ങളും പ്രതികണങ്ങളും'''. ആദ്യമായി കണ്ടുപിടിക്കപ്പെട്ട പ്രതികണം പോസിട്രോണ്‍ ആണ്‌. 1932-ല്‍ കോസ്‌മിക്‌ രശ്‌മികളില്‍ നടത്തിയ ക്ലൗഡ്‌ ചേംബര്‍(Cloud chamber)  പരീക്ഷണത്തില്‍ സി.ഡി. ആന്‍ഡേഴ്‌സണ്‍ ആണ്‌ ഇതിനെ കണ്ടെത്തിയത്‌. അതിന്‌ രണ്ടുവര്‍ഷം മുമ്പ്‌ പോസിട്രോണിന്റെ അസ്‌തിത്വം പോള്‍ ഡിറാക്‌ എന്ന പ്രശസ്‌ത ബ്രിട്ടിഷ്‌ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സൈദ്ധാന്തികമായി പ്രവചിച്ചിരുന്നു. ഇലക്‌ട്രോണിനെ സംബന്ധിച്ച തന്റെ പ്രഖ്യാതമായ ആപേക്ഷികീയ ക്വാണ്ടം ബലതന്ത്ര സിദ്ധാന്തമായിരുന്നു ഇതിനാധാരം. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ പോസിറ്റീവും നെഗറ്റീവും ഊര്‍ജതലങ്ങളില്‍ വര്‍ത്തിക്കാന്‍ കഴിയുമെന്നാണ്‌ ഈ സിദ്ധാന്തത്തില്‍ നിന്നുള്ള നിഗമനം. നെഗറ്റീവ്‌ ഊര്‍ജനിലകള്‍ സാധാരണഗതിയില്‍ പൂര്‍ണമായും ഇലക്‌ട്രോണ്‍ നിബദ്ധമായിരിക്കും. എന്നാല്‍ പ്രത്യേക സാഹചര്യങ്ങളില്‍, മതിയായ ഊര്‍ജം ലഭിക്കുന്നതോടെ ഒരു ഇലക്‌ട്രോണ്‍ ഇവിടെനിന്നും വിമോചിതമായി പോസിറ്റീവ്‌ ഊര്‍ജാവസ്ഥയെ പ്രോപിക്കാന്‍ സാധ്യതയുണ്ട്‌. അപ്പോള്‍ നെഗറ്റീവ്‌ ഊര്‍ജതലത്തില്‍ ഒരു വിടവ്‌ അഥവാ ഒഴിവ്‌ ഉണ്ടാകുന്നു. നെഗറ്റീവ്‌ ചാര്‍ജ്‌ വാഹിയായ ഇലക്‌ട്രോണിന്റെ അഭാവം, പോസിറ്റീവ്‌ ചാര്‍ജും തുല്യദ്രവ്യമാനവുമുള്ള മറ്റൊരു കണത്തിന്റെ സാന്നിധ്യമായി ഡിറാക്‌ വ്യാഖ്യാനിച്ചു. ഇലക്‌ട്രോണിന്റെ പ്രതികണത്തെ ആന്‍ഡേഴ്‌സണ്‍ കണ്ടെത്തിയതോടെ അന്നോളം അജ്ഞാതമായിരുന്ന പുതിയൊരു ദ്രവ്യപ്രപഞ്ചത്തിലേക്കുള്ള വാതില്‍ തുറന്നു കിട്ടുകയുണ്ടായി. ഡിറാക്‌ "രന്ധ്രം'(Hole)  എന്നു വിശേഷിപ്പിച്ച ഈ കണത്തിനെ ആന്‍ഡേഴ്‌സണ്‍ "പോസിട്രോണ്‍' എന്നു നാമകരണം ചെയ്‌തു. അതിന്റെ സവിശേഷ ഗുണധര്‍മങ്ങളുടെ അടിസ്ഥാനത്തില്‍ ഭൗതികശാസ്‌ത്രജ്ഞര്‍ അതിനെ ഇലക്‌ട്രോണിന്റെ പ്രതികണമായിട്ടംഗീകരിച്ചു.
 +
 
 +
നെഗറ്റീവ്‌ ഊര്‍ജനിലയില്‍ നിന്നും പോസിറ്റീവ്‌ ഊര്‍ജനിലയിലേക്ക്‌ ഉയര്‍ത്തപ്പെടുന്ന ഇലക്‌ട്രോണിനോടൊപ്പം തന്നെ പോസിട്രോണും ജന്മമെടുക്കന്നതിനാല്‍ ഈ പ്രക്രിയ "യുഗ്മോല്‌പാദനം'(Pair Production)  എന്നറിയപ്പെടുന്നു. ഡിറാക്കിന്റെ സിദ്ധാന്തമനുസരിച്ച്‌ ഇതിനുവേണ്ട ഏറ്റവും കുറഞ്ഞ ഊര്‍ജം  &gamma;= 2m<sub>o</sub>c<sup>2</sup>ആകുന്നു. ഇവിടെ m<sub>o</sub> എന്നത്‌ ഇലക്‌ട്രോണിന്റെ വിരാമദ്രവ്യമാ(rest mass)നവും, C പ്രകാശവേഗതയുമാണ്‌. ഈ നിയമം മറ്റു കണ-പ്രതികണ ജോടികള്‍ക്കും ബാധകമാണ്‌.
-
കണങ്ങളും പ്രതികണങ്ങളും. ആദ്യമായി കണ്ടുപിടിക്കപ്പെട്ട പ്രതികണം പോസിട്രാണ്‍ ആണ്‌. 1932-ൽ കോസ്‌മിക്‌ രശ്‌മികളിൽ നടത്തിയ ക്ലൗഡ്‌ ചേംബർ(Cloud chamber)  പരീക്ഷണത്തിൽ സി.ഡി. ആന്‍ഡേഴ്‌സണ്‍ ആണ്‌ ഇതിനെ കണ്ടെത്തിയത്‌. അതിന്‌ രണ്ടുവർഷം മുമ്പ്‌ പോസിട്രാണിന്റെ അസ്‌തിത്വം പോള്‍ ഡിറാക്‌ എന്ന പ്രശസ്‌ത ബ്രിട്ടിഷ്‌ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സൈദ്ധാന്തികമായി പ്രവചിച്ചിരുന്നു. ഇലക്‌ട്രാണിനെ സംബന്ധിച്ച തന്റെ പ്രഖ്യാതമായ ആപേക്ഷികീയ ക്വാണ്ടം ബലതന്ത്ര സിദ്ധാന്തമായിരുന്നു ഇതിനാധാരം. ഇലക്‌ട്രാണുകള്‍ക്ക്‌ പോസിറ്റീവും നെഗറ്റീവും ഊർജതലങ്ങളിൽ വർത്തിക്കാന്‍ കഴിയുമെന്നാണ്‌ ഈ സിദ്ധാന്തത്തിൽ നിന്നുള്ള നിഗമനം. നെഗറ്റീവ്‌ ഊർജനിലകള്‍ സാധാരണഗതിയിൽ പൂർണമായും ഇലക്‌ട്രാണ്‍ നിബദ്ധമായിരിക്കും. എന്നാൽ പ്രത്യേക സാഹചര്യങ്ങളിൽ, മതിയായ ഊർജം ലഭിക്കുന്നതോടെ ഒരു ഇലക്‌ട്രാണ്‍ ഇവിടെനിന്നും വിമോചിതമായി പോസിറ്റീവ്‌ ഊർജാവസ്ഥയെ പ്രാപിക്കാന്‍ സാധ്യതയുണ്ട്‌. അപ്പോള്‍ നെഗറ്റീവ്‌ ഊർജതലത്തിൽ ഒരു വിടവ്‌ അഥവാ ഒഴിവ്‌ ഉണ്ടാകുന്നു. നെഗറ്റീവ്‌ ചാർജ്‌ വാഹിയായ ഇലക്‌ട്രാണിന്റെ അഭാവം, പോസിറ്റീവ്‌ ചാർജും തുല്യദ്രവ്യമാനവുമുള്ള മറ്റൊരു കണത്തിന്റെ സാന്നിധ്യമായി ഡിറാക്‌ വ്യാഖ്യാനിച്ചു. ഇലക്‌ട്രാണിന്റെ പ്രതികണത്തെ ആന്‍ഡേഴ്‌സണ്‍ കണ്ടെത്തിയതോടെ അന്നോളം അജ്ഞാതമായിരുന്ന പുതിയൊരു ദ്രവ്യപ്രപഞ്ചത്തിലേക്കുള്ള വാതിൽ തുറന്നു കിട്ടുകയുണ്ടായി. ഡിറാക്‌ "രന്ധ്രം'(Hole)  എന്നു വിശേഷിപ്പിച്ച ഈ കണത്തിനെ ആന്‍ഡേഴ്‌സണ്‍ "പോസിട്രാണ്‍' എന്നു നാമകരണം ചെയ്‌തു. അതിന്റെ സവിശേഷ ഗുണധർമങ്ങളുടെ അടിസ്ഥാനത്തിൽ ഭൗതികശാസ്‌ത്രജ്ഞർ അതിനെ ഇലക്‌ട്രാണിന്റെ പ്രതികണമായിട്ടംഗീകരിച്ചു.  
+
ഡിറാക്കിന്റെ ഗണിതനിര്‍ധാരണം പൂര്‍ണമായും അംഗീകരിക്കുമ്പോഴും അദ്ദേഹത്തിന്റെ വ്യാഖ്യാനം-ഇലക്‌ട്രോണ്‍പൂരിത നെഗറ്റീവ്‌ ഊര്‍ജതലങ്ങള്‍ എന്നത്‌-ഇന്നു ശാസ്‌ത്രലോകം അംഗീകരിക്കുന്നില്ല. ഉന്നത ഊര്‍ജത്തിലുള്ള കൂട്ടിമുട്ടലുകളില്‍ കണ-പ്രതികണയുഗ്മങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടുകയാണ്‌ എന്നാണ്‌ ആധുനിക കണികാഭൗതികം പറയുന്നത്‌.
-
നെഗറ്റീവ്‌ ഊർജനിലയിൽ നിന്നും പോസിറ്റീവ്‌ ഊർജനിലയിലേക്ക്‌ ഉയർത്തപ്പെടുന്ന ഇലക്‌ട്രാണിനോടൊപ്പം തന്നെ പോസിട്രാണും ജന്മമെടുക്കന്നതിനാൽ ഈ പ്രക്രിയ "യുഗ്മോല്‌പാദനം'(Pair Production) എന്നറിയപ്പെടുന്നു. ഡിറാക്കിന്റെ സിദ്ധാന്തമനുസരിച്ച്‌ ഇതിനുവേണ്ട ഏറ്റവും കുറഞ്ഞ ഊർജം  = 2ാീര2ആകുന്നു. ഇവിടെ ാീ എന്നത്‌ ഇലക്‌ട്രാണിന്റെ വിരാമദ്രവ്യമാ(rest mass)നവും, ഇ പ്രകാശവേഗതയുമാണ്‌. ഈ നിയമം മറ്റു കണ-പ്രതികണ ജോടികള്‍ക്കും ബാധകമാണ്‌.
+
കണവും പ്രതികണവും തമ്മിലുള്ള കൂട്ടിമുട്ടല്‍ രണ്ടിന്റെയും നാശത്തില്‍ കലാശിക്കുകയും അവ ഊര്‍ജമായി രൂപാന്തരപ്പെടുകയും ചെയ്യുമ്പോള്‍ ഉല്‌പന്നമാകുന്ന ഊര്‍ജത്തിന്റെ അളവ്‌ 2m<sub>o</sub>c<sup>2</sup> തന്നെ ആയിരിക്കും. ഈ പ്രക്രിയ "യുഗ്മ ഉന്മൂലനം' (Pair annihilation) എന്നറിയപ്പെടുന്നു.  
-
ഡിറാക്കിന്റെ ഗണിതനിർധാരണം പൂർണമായും അംഗീകരിക്കുമ്പോഴും അദ്ദേഹത്തിന്റെ വ്യാഖ്യാനം-ഇലക്‌ട്രാണ്‍പൂരിത നെഗറ്റീവ്‌ ഊർജതലങ്ങള്‍ എന്നത്‌-ഇന്നു ശാസ്‌ത്രലോകം അംഗീകരിക്കുന്നില്ല. ഉന്നത ഊർജത്തിലുള്ള കൂട്ടിമുട്ടലുകളിൽ കണ-പ്രതികണയുഗ്മങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടുകയാണ്‌ എന്നാണ്‌ ആധുനിക കണികാഭൗതികം പറയുന്നത്‌.
+
യുഗ്മോല്‌പാദനവും, യുഗ്മ ഉന്മൂലനവും പ്രകൃതിയില്‍ നിരന്തരം സംഭവിക്കുന്നുണ്ട്‌. 1956-ല്‍ ആന്റിപ്രോട്ടോണും, തുടര്‍ന്ന്‌ ആന്റിന്യൂട്രോണും കണ്ടുപിടിക്കപ്പെട്ടു. റേഡിയോ ആക്‌റ്റീവ്‌ മൂലകങ്ങളില്‍ "ബീറ്റാക്ഷയം' (Beta decay) വഴി ഇലക്‌ട്രോണിനോടൊപ്പം പുറത്തുവരുന്ന വിചിത്രമായ കണം ന്യൂട്രീനോ (neutrino)യുടെ പ്രതികണമായ "ആന്റി ന്യൂട്രിനോ' (anti neutrino) ആണെന്നും താമസിയാതെ ബോധ്യമായി.
-
കണവും പ്രതികണവും തമ്മിലുള്ള കൂട്ടിമുട്ടൽ രണ്ടിന്റെയും നാശത്തിൽ കലാശിക്കുകയും അവ ഊർജമായി രൂപാന്തരപ്പെടുകയും ചെയ്യുമ്പോള്‍ ഉല്‌പന്നമാകുന്ന ഊർജത്തിന്റെ അളവ്‌ 2ാീര2 തന്നെ ആയിരിക്കും. ഈ പ്രക്രിയ "യുഗ്മ ഉന്മൂലനം' (Pair annihilation) എന്നറിയപ്പെടുന്നു.  
+
പില്‌ക്കാലത്ത്‌ കണ്ടെത്തിയ നൂറുകണക്കിന്‌ പദാര്‍ഥകണങ്ങളിലോരോന്നിനും സമാനമായി അതിന്റെ പ്രതികണവും ഉണ്ടെന്ന്‌ വ്യക്തമായിട്ടുണ്ട്‌.
-
യുഗ്മോല്‌പാദനവും, യുഗ്മ ഉന്മൂലനവും പ്രകൃതിയിൽ നിരന്തരം സംഭവിക്കുന്നുണ്ട്‌. 1956-ൽ ആന്റിപ്രാട്ടോണും, തുടർന്ന്‌ ആന്റിന്യൂട്രാണും കണ്ടുപിടിക്കപ്പെട്ടു. റേഡിയോ ആക്‌റ്റീവ്‌ മൂലകങ്ങളിൽ "ബീറ്റാക്ഷയം' (Beta decay) വഴി ഇലക്‌ട്രാണിനോടൊപ്പം പുറത്തുവരുന്ന വിചിത്രമായ കണം ന്യൂട്രീനോ (neutrino)യുടെ പ്രതികണമായ "ആന്റി ന്യൂട്രിനോ' (anti neutrino) ആണെന്നും താമസിയാതെ ബോധ്യമായി.
+
ഒരു കണത്തിന്‌ ദ്രവ്യമാനമോ (ഊര്‍ജമോ), ചക്രണമോ ഒഴികെ മറ്റു ഗുണവിശേഷങ്ങളൊന്നുമില്ലെങ്കില്‍ അതിന്റെ പ്രതികണം അതില്‍നിന്ന്‌ വ്യത്യസ്‌തമായിരിക്കുകയില്ല. ഉദാഹരണമായി ഫോട്ടോണ്‍ (γ),π<sup>o</sup> എന്നീ കണങ്ങള്‍ അതാതിന്റെ പ്രതികണങ്ങള്‍ കൂടിയാണ്‌. കണത്തിന്‌ വൈദ്യുത ചാര്‍ജ്‌, കാന്തികാഘൂര്‍ണം (magnetic moment) തുടങ്ങിയ മറ്റ്‌ ഗുണധര്‍മങ്ങളുണ്ടെങ്കില്‍ പ്രതികണത്തിന്‌ അവ നേരെ വിപരീതമായിരിക്കും. അതിനാല്‍ കണങ്ങളും പ്രതികണങ്ങളും വ്യത്യസ്‌തമാണ്‌. മെസോണുകളില്‍ π<sup>-</sup>, K<sup>-</sup> , K<sup>o</sup> എന്നിവ യഥാക്രമം π<sup>+</sup>, K<sup>+</sup> , K<sup>o</sup> എന്നീ കണങ്ങളുടെയും, ബാരിയോണുകളില്‍ ∑,≡°, Λ° എന്നിവ ∑<sup>+</sup>,≡°, Λ° എന്നിവയുടെയും പ്രതികണങ്ങളത്ര.
-
പില്‌ക്കാലത്ത്‌ കണ്ടെത്തിയ നൂറുകണക്കിന്‌ പദാർഥകണങ്ങളിലോരോന്നിനും സമാനമായി അതിന്റെ പ്രതികണവും ഉണ്ടെന്ന്‌ വ്യക്തമായിട്ടുണ്ട്‌.
+
ന്യൂട്രോണി(n)ന്‌ വൈദ്യുത ചാര്‍ജ്‌ ഇല്ലെങ്കിലും കാന്തികാഘൂര്‍ണമുള്ളതിനാലാണ്‌ പ്രതികണം (n) അതില്‍നിന്ന്‌ ഭിന്നമായിരിക്കുന്നത്‌. പദാര്‍ഥകണവുമായി ചേരുമ്പോള്‍ യുഗ്മഉന്മൂലനം നടക്കുന്നു എന്നതാണ്‌ പ്രതികണങ്ങളുടെ തീര്‍ച്ചയുള്ള പരിശോധന.
-
ഒരു കണത്തിന്‌ ദ്രവ്യമാനമോ (ഊർജമോ), ചക്രണമോ ഒഴികെ മറ്റു ഗുണവിശേഷങ്ങളൊന്നുമില്ലെങ്കിൽ അതിന്റെ പ്രതികണം അതിൽനിന്ന്‌ വ്യത്യസ്‌തമായിരിക്കുകയില്ല. ഉദാഹരണമായി ഫോട്ടോണ്‍ (), എന്നീ കണങ്ങള്‍ അതാതിന്റെ പ്രതികണങ്ങള്‍ കൂടിയാണ്‌. കണത്തിന്‌ വൈദ്യുത ചാർജ്‌, കാന്തികാഘൂർണം (magnetic moment) തുടങ്ങിയ മറ്റ്‌ ഗുണധർമങ്ങളുണ്ടെങ്കിൽ പ്രതികണത്തിന്‌ അവ നേരെ വിപരീതമായിരിക്കും. അതിനാൽ കണങ്ങളും പ്രതികണങ്ങളും വ്യത്യസ്‌തമാണ്‌. മെസോണുകളിൽ –, ഗ– , ഗമ്പഎന്നിവ യഥാക്രമം +, + ,ഗമ്പഎന്നീ കണങ്ങളുടെയും, ബാരിയോണുകളിൽ എന്നിവ എന്നിവയുടെയും പ്രതികണങ്ങളത്ര.
+
-
ന്യൂട്രാണി(ി)ന്‌ വൈദ്യുത ചാർജ്‌ ഇല്ലെങ്കിലും കാന്തികാഘൂർണമുള്ളതിനാലാണ്‌ പ്രതികണം (ി) അതിൽനിന്ന്‌ ഭിന്നമായിരിക്കുന്നത്‌. പദാർഥകണവുമായി ചേരുമ്പോള്‍ യുഗ്മഉന്മൂലനം നടക്കുന്നു എന്നതാണ്‌ പ്രതികണങ്ങളുടെ തീർച്ചയുള്ള പരിശോധന.
+
-
പോസിട്രാണിയം(Positronium) . പോസിട്രാണും ഇലക്‌ട്രാണും കൂടിച്ചേരുമ്പോള്‍ രണ്ടും നാമാവശേഷമാകും. എന്നാൽ ഈ പ്രക്രിയ ആരംഭിക്കുന്നതിനു മുമ്പായി അവ തമ്മിൽ ഒരു ബന്ധത്തിലേർപ്പെട്ട്‌ മറ്റൊരു കണദ്വയം ഉണ്ടാകുന്ന സന്ദർഭങ്ങളും അപൂർവമല്ല. അങ്ങനെ ഉണ്ടാകുന്ന ഒരു കണദ്വയമാണ്‌ പോസിട്രാണിയം. ഹൈഡ്രജന്‍ അണുവിന്റെ ഘടനയ്‌ക്കു സദൃശമാണ്‌ അതിന്റെ ഘടന; ഒരു ഘനഅണുകേന്ദ്രം ഇല്ലെന്നുമാത്രം. അതിൽ പോസിട്രാണും ഇലക്‌ട്രാണും ഒരേ വേഗത്തിൽ അന്യോന്യം പ്രദക്ഷിണം വയ്‌ക്കുന്നു. കണ-പ്രതികണ അസന്തുലനം. പ്രപഞ്ചാരംഭത്തിൽ ദ്രവ്യവും പ്രതിദ്രവ്യവും തുല്യഅളവിൽ തന്നെ സൃഷ്‌ടിക്കപ്പെട്ടിരിക്കണം. എന്നാൽ പ്രപഞ്ചത്തിൽ ഇന്നു നാം കാണുന്നത്‌ മിക്കവാറും മാറ്റർ മാത്രമാണ്‌. എങ്ങനെ ഈ സ്ഥിതി സംജാതമായി?  പ്രശസ്‌ത റഷ്യന്‍ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സഖറോഫ്‌ 1967-ൽ നല്‌കിയ വിശദീകരണം ശ്രദ്ധേയമാണ്‌. സഖറോഫിന്റെ പഠനങ്ങളിൽനിന്നും മൗലിക കണങ്ങള്‍ക്കു ബാധകമായതും അടിസ്ഥാന സംരക്ഷണ നിയമ(conservation law)ങ്ങളിലൊന്നായി ഭൗതിക ശാസ്‌ത്രത്തിൽ പ്രതിഷ്‌ഠനേടിയതുമായ രു-സിമട്രിയുടെ ലംഘനം (CP-violation) ഈ സ്ഥിതി വിശേഷത്തിലേക്കു നയിക്കാമെന്നു വ്യക്തമായി.  
+
'''പോസിട്രോണിയം(Positronium''') . പോസിട്രോണും ഇലക്‌ട്രോണും കൂടിച്ചേരുമ്പോള്‍ രണ്ടും നാമാവശേഷമാകും. എന്നാല്‍ ഈ പ്രക്രിയ ആരംഭിക്കുന്നതിനു മുമ്പായി അവ തമ്മില്‍ ഒരു ബന്ധത്തിലേര്‍പ്പെട്ട്‌ മറ്റൊരു കണദ്വയം ഉണ്ടാകുന്ന സന്ദര്‍ഭങ്ങളും അപൂര്‍വമല്ല. അങ്ങനെ ഉണ്ടാകുന്ന ഒരു കണദ്വയമാണ്‌ പോസിട്രോണിയം. ഹൈഡ്രജന്‍ അണുവിന്റെ ഘടനയ്‌ക്കു സദൃശമാണ്‌ അതിന്റെ ഘടന; ഒരു ഘനഅണുകേന്ദ്രം ഇല്ലെന്നുമാത്രം. അതില്‍ പോസിട്രോണും ഇലക്‌ട്രോണും ഒരേ വേഗത്തില്‍ അന്യോന്യം പ്രദക്ഷിണം വയ്‌ക്കുന്നു.  
-
രണ്ടു ബൃഹത്തായ പരീക്ഷണപദ്ധതികള്‍ ഈ വിഷയത്തിന്റെ നിഷ്‌കർഷമായ പഠനത്തിനായി ഇപ്പോള്‍ നിലവിലുണ്ട്‌; ഒന്ന്‌, അമേരിക്കയിൽ "സ്റ്റാന്‍ഫോർഡ്‌ ലീനിയർ ആക്‌സിലറേറ്റർ സെന്ററിലും(SLAC), മറ്റൊന്ന്‌ ജപ്പാനിൽ "സുക്കുബ'(Tsukuba) യിലും. അടുത്തകാലത്ത്‌ കണ്ടെത്തിയ -മെസോണുകളി(B-mesons)ലും അവയുടെ പ്രതികണങ്ങളിലും സംഭവിക്കുന്ന ഇജ-ലംഘനം ആണ്‌ ഈ പരീക്ഷണങ്ങളിൽ പഠന വിധേയമാക്കുന്നത്‌. എന്നാൽ ഇതിനകം നിരീക്ഷിക്കാന്‍ കഴിഞ്ഞ ഇജ-ലംഘനം നമ്മുടെ പ്രപഞ്ചത്തിലെ മാറ്റർ-ആന്റീമാറ്റർ അസന്തുലനം സഖറോഫ്‌ മോഡലിന്റെ അടിസ്ഥാനത്തിൽ മനസ്സിലാക്കാന്‍ പര്യാപ്‌തമല്ലെന്നു പറയേണ്ടിയിരിക്കുന്നു.
+
'''കണ-പ്രതികണ അസന്തുലനം'''. പ്രപഞ്ചാരംഭത്തില്‍ ദ്രവ്യവും പ്രതിദ്രവ്യവും തുല്യഅളവില്‍ തന്നെ സൃഷ്‌ടിക്കപ്പെട്ടിരിക്കണം. എന്നാല്‍ പ്രപഞ്ചത്തില്‍ ഇന്നു നാം കാണുന്നത്‌ മിക്കവാറും മാറ്റര്‍ മാത്രമാണ്‌. എങ്ങനെ ഈ സ്ഥിതി സംജാതമായി?  പ്രശസ്‌ത റഷ്യന്‍ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സഖറോഫ്‌ 1967-ല്‍ നല്‌കിയ വിശദീകരണം ശ്രദ്ധേയമാണ്‌. സഖറോഫിന്റെ പഠനങ്ങളില്‍നിന്നും മൗലിക കണങ്ങള്‍ക്കു ബാധകമായതും അടിസ്ഥാന സംരക്ഷണ നിയമ(conservation law)ങ്ങളിലൊന്നായി ഭൗതിക ശാസ്‌ത്രത്തില്‍ പ്രതിഷ്‌ഠനേടിയതുമായ CP-സിമട്രിയുടെ ലംഘനം (CP-violation) ഈ സ്ഥിതി വിശേഷത്തിലേക്കു നയിക്കാമെന്നു വ്യക്തമായി.
-
പ്രതികണം പരീക്ഷണശാലയിൽ. സ്ഥൂല രൂപത്തിലുള്ള ആന്റീമാറ്ററോ ഒറ്റപ്പെട്ട ആന്റീആറ്റങ്ങള്‍ പോലുമോ പ്രകൃതിയിൽ കാണുന്നില്ലെന്നു വരികിലും, പല മൗലിക കണങ്ങളുടെയും പ്രതികണങ്ങളുടെയും സാന്നിധ്യവും പ്രയോഗക്ഷമതയും ഉപയുക്തതയും തള്ളിക്കളയാനാവില്ല. റേഡിയോ ആക്‌ടീവത വഴി ചില മൂലകങ്ങളുടെ അണു കേന്ദ്രങ്ങളിൽനിന്നും പോസിട്രാണുകള്‍ പുറത്തുവരുന്നുണ്ട്‌. പോസിട്രാണുകളെ ഉപയോഗപ്പെടുത്തിയുള്ള അത്യാധുനിക "മെഡിക്കൽ ഇമേജിങ്‌ ടെക്‌നോളജി' ആണ്‌ "പോസിട്രാണ്‍ എമിഷന്‍ ടോമോഗ്രാഫി'(PET) .
+
[[ചിത്രം:sakharoff.png|left|thumb|സഖറോഫ് ]]
 +
രണ്ടു ബൃഹത്തായ പരീക്ഷണപദ്ധതികള്‍ ഈ വിഷയത്തിന്റെ നിഷ്‌കര്‍ഷമായ പഠനത്തിനായി ഇപ്പോള്‍ നിലവിലുണ്ട്‌; ഒന്ന്‌, അമേരിക്കയില്‍ "സ്റ്റാന്‍ഫോര്‍ഡ്‌ ലീനിയര്‍ ആക്‌സിലറേറ്റര്‍ സെന്ററിലും(SLAC), മറ്റൊന്ന്‌ ജപ്പാനില്‍ "സുക്കുബ'(Tsukuba) യിലും. അടുത്തകാലത്ത്‌ കണ്ടെത്തിയ B-മെസോണുകളി(B-mesons)ലും അവയുടെ പ്രതികണങ്ങളിലും സംഭവിക്കുന്ന CP-ലംഘനം ആണ്‌ ഈ പരീക്ഷണങ്ങളില്‍ പഠന വിധേയമാക്കുന്നത്‌. എന്നാല്‍ ഇതിനകം നിരീക്ഷിക്കാന്‍ കഴിഞ്ഞ CP-ലംഘനം നമ്മുടെ പ്രപഞ്ചത്തിലെ മാറ്റര്‍-ആന്റീമാറ്റര്‍ അസന്തുലനം സഖറോഫ്‌ മോഡലിന്റെ അടിസ്ഥാനത്തില്‍ മനസ്സിലാക്കാന്‍ പര്യാപ്‌തമല്ലെന്നു പറയേണ്ടിയിരിക്കുന്നു.
-
കോസ്‌മിക്‌ രശ്‌മികളിൽ ഏതാനും ആന്റീപ്രോട്ടോണുകള്‍ എപ്പോഴും ഉണ്ടായിരിക്കും. ഇടയ്‌ക്കിടെ രൂപപ്പെടുന്ന കോസ്‌മിക റേ ഷവറുകളി(cosmic ray showers)പ്രതികണങ്ങള്‍ ധാരാളമായി കാണാറുണ്ട്‌.
+
'''പ്രതികണം പരീക്ഷണശാലയില്‍'''. സ്ഥൂല രൂപത്തിലുള്ള ആന്റീമാറ്ററോ ഒറ്റപ്പെട്ട ആന്റീആറ്റങ്ങള്‍ പോലുമോ പ്രകൃതിയില്‍ കാണുന്നില്ലെന്നു വരികിലും, പല മൗലിക കണങ്ങളുടെയും പ്രതികണങ്ങളുടെയും സാന്നിധ്യവും പ്രയോഗക്ഷമതയും ഉപയുക്തതയും തള്ളിക്കളയാനാവില്ല. റേഡിയോ ആക്‌ടീവത വഴി ചില മൂലകങ്ങളുടെ അണു കേന്ദ്രങ്ങളില്‍നിന്നും പോസിട്രോണുകള്‍ പുറത്തുവരുന്നുണ്ട്‌. പോസിട്രോണുകളെ ഉപയോഗപ്പെടുത്തിയുള്ള അത്യാധുനിക "മെഡിക്കല്‍ ഇമേജിങ്‌ ടെക്‌നോളജി' ആണ്‌ "പോസിട്രോണ്‍ എമിഷന്‍ ടോമോഗ്രാഫി'(PET) .
-
ആന്റീമാറ്റർ പ്രകൃതിയിൽ ദുർലഭമാണെങ്കിലും അതേപ്പറ്റിയുള്ള പഠനങ്ങള്‍ക്ക്‌ കണഭൗതികജ്ഞർ(Particle Physicists)  പരമമായ പ്രാധാന്യമാണ്‌ കല്‌പിക്കുന്നത്‌. കാരണം ഭൗതിക ശാസ്‌ത്ര നിയമങ്ങളിലേക്ക്‌ അതുല്യമായ ഉള്‍ക്കാഴ്‌ച നല്‌കാന്‍ അവ പര്യാപ്‌തമാണ്‌.  
+
[[ചിത്രം:SLAC_detector.png|left|thumb|സ്റ്റാന്‍ഫോര്‍ഡ്  ലീനിയര്‍ അക്സിലറേറ്റര്‍ ]]
 +
കോസ്‌മിക്‌ രശ്‌മികളില്‍ ഏതാനും ആന്റീപ്രോട്ടോണുകള്‍ എപ്പോഴും ഉണ്ടായിരിക്കും. ഇടയ്‌ക്കിടെ രൂപപ്പെടുന്ന കോസ്‌മിക റേ ഷവറുകളി(cosmic ray showers)ല്‍ പ്രതികണങ്ങള്‍ ധാരാളമായി കാണാറുണ്ട്‌.
 +
ആന്റീമാറ്റര്‍ പ്രകൃതിയില്‍ ദുര്‍ലഭമാണെങ്കിലും അതേപ്പറ്റിയുള്ള പഠനങ്ങള്‍ക്ക്‌ കണഭൗതികജ്ഞര്‍(Particle Physicists)  പരമമായ പ്രാധാന്യമാണ്‌ കല്‌പിക്കുന്നത്‌. കാരണം ഭൗതിക ശാസ്‌ത്ര നിയമങ്ങളിലേക്ക്‌ അതുല്യമായ ഉള്‍ക്കാഴ്‌ച നല്‌കാന്‍ അവ പര്യാപ്‌തമാണ്‌.  
-
അമേരിക്കയിൽ, ഭൗതിക ശാസ്‌ത്രജ്ഞർ 1955 മുതൽ "ലോറന്‍സ്‌-ബെർക്ക്‌ലി' നാഷണൽ ലാബിലെ ബീവാട്രണ്‍ (Bevatron) പാർട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിൽ ഊർജസ്വലമായ പ്രോട്ടോണ്‍ ബീമിനെ ചെമ്പ്‌ തകിടിൽ പതിപ്പിച്ച്‌ ആന്റിപ്രോട്ടോണ്‍ ഉത്‌പാദനം നിർവഹിച്ചുവരുന്നു. ഇന്ന്‌ അത്യുന്നത ഊർജതലങ്ങളിലെ ഭൗതികവിജ്ഞാന പഠനത്തിനായി ബടേവിയയിലെ (ഇല്ലിനോയ്‌) "ഫെർമി നാഷണൽ ആക്‌സിലറേറ്റർ ലാബി' ലെ ഭീമാകാരമായ നാളികളിലൂടെ പ്രോട്ടോണ്‍, ആന്റീപ്രോട്ടോണ്‍ ബീമുകളെ വിപരീത ദിശകളിൽ പായിച്ച്‌ പരസ്‌പരം സംഘട്ടനത്തിനു വിധേയമാക്കുന്നു,
+
അമേരിക്കയില്‍, ഭൗതിക ശാസ്‌ത്രജ്ഞര്‍ 1955 മുതല്‍ "ലോറന്‍സ്‌-ബെര്‍ക്ക്‌ലി' നാഷണല്‍ ലാബിലെ ബീവാട്രണ്‍ (Bevatron) പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററില്‍ ഊര്‍ജസ്വലമായ പ്രോട്ടോണ്‍ ബീമിനെ ചെമ്പ്‌ തകിടില്‍ പതിപ്പിച്ച്‌ ആന്റിപ്രോട്ടോണ്‍ ഉത്‌പാദനം നിര്‍വഹിച്ചുവരുന്നു. ഇന്ന്‌ അത്യുന്നത ഊര്‍ജതലങ്ങളിലെ ഭൗതികവിജ്ഞാന പഠനത്തിനായി ബടേവിയയിലെ (ഇല്ലിനോയ്‌) "ഫെര്‍മി നാഷണല്‍ ആക്‌സിലറേറ്റര്‍ ലാബി' ലെ ഭീമാകാരമായ നാളികളിലൂടെ പ്രോട്ടോണ്‍, ആന്റീപ്രോട്ടോണ്‍ ബീമുകളെ വിപരീത ദിശകളില്‍ പായിച്ച്‌ പരസ്‌പരം സംഘട്ടനത്തിനു വിധേയമാക്കുന്നു,
 +
[[ചിത്രം:LHC-Cern.png|thumb|ലാര്‍ജ് ഹൈഡ്രോണ്‍ കൊള്ളൈഡര്‍ ]]
 +
1995 ജനു. 4-ാം തീയതി പാര്‍ട്ടിക്കിള്‍ ഫിസിക്‌സ്‌ ഗവേഷണത്തിനുള്ള യൂറോപ്യന്‍ ലാബറട്ടറി(CERN)യില്‍ നിന്നും ലോകത്ത്‌ ആദ്യമായി ആന്റീമാറ്ററിന്റെ സമ്പൂര്‍ണ ആറ്റം രൂപപ്പെടുത്താന്‍ കഴിഞ്ഞതായി പ്രഖ്യാപനമുണ്ടായി. ഇഋഞചലെ പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ ഓയ്‌ലര്‍ടും (Oelert) സംഘവും ആന്റീഹൈഡ്രജന്റെ ഏതാനും ആറ്റങ്ങളാണ്‌ ഉത്‌പാദിപ്പിച്ചത്‌. സാധാരണ ഹൈഡ്രജന്‍ ആറ്റത്തിന്റെ കേന്ദ്രത്തില്‍ ഒരു പ്രോട്ടോണും, പുറമേ ഭ്രമണം ചെയ്യുന്ന ഒരു ഇലക്‌ട്രോണുമാണല്ലോ ഉള്ളത്‌. എന്നാല്‍ ആന്റിഹൈഡ്രജന്‍ ആറ്റത്തില്‍ വിപരീതചാര്‍ജ്‌ വാഹികളായ ആന്റിപ്രോട്ടോണും, പോസിട്രോണും ആയിരിക്കും ഉണ്ടാവുക.
-
1995 ജനു. 4-ാം തീയതി പാർട്ടിക്കിള്‍ ഫിസിക്‌സ്‌ ഗവേഷണത്തിനുള്ള യൂറോപ്യന്‍ ലാബറട്ടറി(CERN)യിൽ നിന്നും ലോകത്ത്‌ ആദ്യമായി ആന്റീമാറ്ററിന്റെ സമ്പൂർണ ആറ്റം രൂപപ്പെടുത്താന്‍ കഴിഞ്ഞതായി പ്രഖ്യാപനമുണ്ടായി. ഇഋഞചലെ പാർട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ ഓയ്‌ലർടും (Oelert) സംഘവും ആന്റീഹൈഡ്രജന്റെ ഏതാനും ആറ്റങ്ങളാണ്‌ ഉത്‌പാദിപ്പിച്ചത്‌. സാധാരണ ഹൈഡ്രജന്‍ ആറ്റത്തിന്റെ കേന്ദ്രത്തിൽ ഒരു പ്രോട്ടോണും, പുറമേ ഭ്രമണം ചെയ്യുന്ന ഒരു ഇലക്‌ട്രാണുമാണല്ലോ ഉള്ളത്‌. എന്നാൽ ആന്റിഹൈഡ്രജന്‍ ആറ്റത്തിൽ വിപരീതചാർജ്‌ വാഹികളായ ആന്റിപ്രോട്ടോണും, പോസിട്രാണും ആയിരിക്കും ഉണ്ടാവുക.
+
മാറ്റര്‍-ആന്റിമാറ്റര്‍ സംഘട്ടനം ഭീമമായ തോതിലുള്ള ഊര്‍ജോല്‌പാദനത്തില്‍ കലാശിക്കുമെന്നുള്ളതിനാല്‍ ഒരു കാലത്ത്‌ നക്ഷത്രാന്തര റോക്കറ്റുകളിലെ ഇന്ധനമായും, സൂപ്പര്‍ ബോംബുകളുടെ നിര്‍മാണ വസ്‌തുവായും ഒരു പക്ഷേ ആന്റിമാറ്റര്‍ ഉപയുക്തമാകുമെന്ന്‌ സ്വപ്‌നം കാണുന്നവരുണ്ട്‌.
-
മാറ്റർ-ആന്റിമാറ്റർ സംഘട്ടനം ഭീമമായ തോതിലുള്ള ഊർജോല്‌പാദനത്തിൽ കലാശിക്കുമെന്നുള്ളതിനാൽ ഒരു കാലത്ത്‌ നക്ഷത്രാന്തര റോക്കറ്റുകളിലെ ഇന്ധനമായും, സൂപ്പർ ബോംബുകളുടെ നിർമാണ വസ്‌തുവായും ഒരു പക്ഷേ ആന്റിമാറ്റർ ഉപയുക്തമാകുമെന്ന്‌ സ്വപ്‌നം കാണുന്നവരുണ്ട്‌.
+

Current revision as of 13:37, 4 സെപ്റ്റംബര്‍ 2014

ആന്റിമാറ്റര്‍

Antimatter

സി ഡി ആന്‍ഡെഴ്സന്‍
പോള്‍ ഡിറാക്

സാധാരണ ദ്രവ്യത്തിനു വിപരീതമായ ഗുണവിശേഷങ്ങള്‍ ഉള്ളതായി വിഭാവനം ചെയ്യപ്പെട്ടിരിക്കുന്ന ദ്രവ്യം. സാധാരണ ദ്രവ്യത്തിന്റെ അണുക്കള്‍ ചില മൗലികകണങ്ങളാല്‍ (പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍) നിര്‍മിക്കപ്പെട്ടവയാണ്‌. ഈ മൗലികകണങ്ങളെ കണ്ടെത്തിയതില്‍പ്പിന്നെ, പരീക്ഷണങ്ങളാല്‍ മറ്റുപല കണങ്ങളുടെയും അസ്‌തിത്വം സ്ഥാപിക്കാന്‍ കഴിഞ്ഞിട്ടുണ്ട്‌. ഇവയില്‍ മിക്കതും അസ്ഥിരങ്ങളാണ്‌; ആയുസ്‌ ഒരു സെക്കന്‍ഡിന്റെ അനേക കോടിയിലൊരംശം വരെയായിരിക്കാം. അവ ക്ഷയിച്ച്‌ ദ്രവ്യ ഘടകങ്ങളായി മാറാറുണ്ട്‌. അവയെ പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ കൃത്രിമമായി സൃഷ്‌ടിക്കാനും കഴിയും.

ദ്രവ്യത്തിന്റെ അടിസ്ഥാനഘടകങ്ങളായ പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍ തുടങ്ങിയ കണങ്ങള്‍ക്കു സമാനമായി, അവയ്‌ക്കു തുല്യം ദ്രവ്യമാ(mass)നവും, ചക്രണ(spin)വും എന്നാല്‍, വിപരീത ചാര്‍ജൂകളും ഉള്ള കണങ്ങള്‍ ഉണ്ട്‌. ഇവ അവയുടെ "പ്രതികണങ്ങള്‍' (antiparticles) എന്നറിയപ്പെടുന്നു. ഇലക്‌ട്രോണിന്റെ പ്രതികണമാണ്‌ പോസിട്രോണ്‍ (Positron). രണ്ടും സ്‌പിന്‍ ½ കണങ്ങളാണ്‌. രണ്ടിന്റെയും ദ്രവ്യമാനം തുല്യവുമാണ്‌. വൈദ്യുത ചാര്‍ജ്‌, ഇലക്‌ട്രോണിന്റേത്‌ നെഗറ്റീവും പോസിട്രോണിന്റേത്‌ പോസിറ്റീവും ആകുന്നു.

പ്രോട്ടോണിന്റെയും ന്യൂട്രോണിന്റെയും പ്രതികണങ്ങള്‍ യഥാക്രമം ആന്റിപ്രോട്ടോണും ആന്റിന്യൂട്രോണും ആകുന്നു.

പ്രോട്ടോണ്‍, ന്യൂട്രോണ്‍, ഇലക്‌ട്രോണ്‍ എന്നീ കണങ്ങള്‍ സംഘടിച്ച്‌ സാധാരണ ദ്രവ്യം ഉണ്ടാകുന്നതുപോലെ അവയുടെ പ്രതികണങ്ങളായ ആന്റിപ്രോട്ടോണ്‍, ആന്റിന്യൂട്രോണ്‍, പോസിട്രോണ്‍ എന്നിവ ചേര്‍ത്ത്‌ പ്രതിദ്രവ്യ(antimatter)വും ഉണ്ടാക്കാം. ആന്റിമാറ്ററിന്റേതുമാത്രമായ ഒരു പ്രത്യേക പ്രപഞ്ചം തന്നെ കണ്ടേക്കാമെന്ന്‌ അഭ്യൂഹം മുമ്പുണ്ടായിരുന്നെങ്കിലും ഇപ്പോള്‍ അതു ഗൗരവമായി പരിഗണിക്കപ്പെടുന്നില്ല. സാധാരണ ദ്രവ്യവും പ്രതിദ്രവ്യവും കൂട്ടിമുട്ടിയാല്‍ രണ്ടും നാമാവശേഷമായി ഊര്‍ജകണങ്ങള്‍ (ഗാമാ ഫോട്ടോണുകള്‍) ആയി മാറുന്നു.

കണങ്ങളും പ്രതികണങ്ങളും. ആദ്യമായി കണ്ടുപിടിക്കപ്പെട്ട പ്രതികണം പോസിട്രോണ്‍ ആണ്‌. 1932-ല്‍ കോസ്‌മിക്‌ രശ്‌മികളില്‍ നടത്തിയ ക്ലൗഡ്‌ ചേംബര്‍(Cloud chamber) പരീക്ഷണത്തില്‍ സി.ഡി. ആന്‍ഡേഴ്‌സണ്‍ ആണ്‌ ഇതിനെ കണ്ടെത്തിയത്‌. അതിന്‌ രണ്ടുവര്‍ഷം മുമ്പ്‌ പോസിട്രോണിന്റെ അസ്‌തിത്വം പോള്‍ ഡിറാക്‌ എന്ന പ്രശസ്‌ത ബ്രിട്ടിഷ്‌ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സൈദ്ധാന്തികമായി പ്രവചിച്ചിരുന്നു. ഇലക്‌ട്രോണിനെ സംബന്ധിച്ച തന്റെ പ്രഖ്യാതമായ ആപേക്ഷികീയ ക്വാണ്ടം ബലതന്ത്ര സിദ്ധാന്തമായിരുന്നു ഇതിനാധാരം. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ പോസിറ്റീവും നെഗറ്റീവും ഊര്‍ജതലങ്ങളില്‍ വര്‍ത്തിക്കാന്‍ കഴിയുമെന്നാണ്‌ ഈ സിദ്ധാന്തത്തില്‍ നിന്നുള്ള നിഗമനം. നെഗറ്റീവ്‌ ഊര്‍ജനിലകള്‍ സാധാരണഗതിയില്‍ പൂര്‍ണമായും ഇലക്‌ട്രോണ്‍ നിബദ്ധമായിരിക്കും. എന്നാല്‍ പ്രത്യേക സാഹചര്യങ്ങളില്‍, മതിയായ ഊര്‍ജം ലഭിക്കുന്നതോടെ ഒരു ഇലക്‌ട്രോണ്‍ ഇവിടെനിന്നും വിമോചിതമായി പോസിറ്റീവ്‌ ഊര്‍ജാവസ്ഥയെ പ്രോപിക്കാന്‍ സാധ്യതയുണ്ട്‌. അപ്പോള്‍ നെഗറ്റീവ്‌ ഊര്‍ജതലത്തില്‍ ഒരു വിടവ്‌ അഥവാ ഒഴിവ്‌ ഉണ്ടാകുന്നു. നെഗറ്റീവ്‌ ചാര്‍ജ്‌ വാഹിയായ ഇലക്‌ട്രോണിന്റെ അഭാവം, പോസിറ്റീവ്‌ ചാര്‍ജും തുല്യദ്രവ്യമാനവുമുള്ള മറ്റൊരു കണത്തിന്റെ സാന്നിധ്യമായി ഡിറാക്‌ വ്യാഖ്യാനിച്ചു. ഇലക്‌ട്രോണിന്റെ പ്രതികണത്തെ ആന്‍ഡേഴ്‌സണ്‍ കണ്ടെത്തിയതോടെ അന്നോളം അജ്ഞാതമായിരുന്ന പുതിയൊരു ദ്രവ്യപ്രപഞ്ചത്തിലേക്കുള്ള വാതില്‍ തുറന്നു കിട്ടുകയുണ്ടായി. ഡിറാക്‌ "രന്ധ്രം'(Hole) എന്നു വിശേഷിപ്പിച്ച ഈ കണത്തിനെ ആന്‍ഡേഴ്‌സണ്‍ "പോസിട്രോണ്‍' എന്നു നാമകരണം ചെയ്‌തു. അതിന്റെ സവിശേഷ ഗുണധര്‍മങ്ങളുടെ അടിസ്ഥാനത്തില്‍ ഭൗതികശാസ്‌ത്രജ്ഞര്‍ അതിനെ ഇലക്‌ട്രോണിന്റെ പ്രതികണമായിട്ടംഗീകരിച്ചു.

നെഗറ്റീവ്‌ ഊര്‍ജനിലയില്‍ നിന്നും പോസിറ്റീവ്‌ ഊര്‍ജനിലയിലേക്ക്‌ ഉയര്‍ത്തപ്പെടുന്ന ഇലക്‌ട്രോണിനോടൊപ്പം തന്നെ പോസിട്രോണും ജന്മമെടുക്കന്നതിനാല്‍ ഈ പ്രക്രിയ "യുഗ്മോല്‌പാദനം'(Pair Production) എന്നറിയപ്പെടുന്നു. ഡിറാക്കിന്റെ സിദ്ധാന്തമനുസരിച്ച്‌ ഇതിനുവേണ്ട ഏറ്റവും കുറഞ്ഞ ഊര്‍ജം γ= 2moc2ആകുന്നു. ഇവിടെ mo എന്നത്‌ ഇലക്‌ട്രോണിന്റെ വിരാമദ്രവ്യമാ(rest mass)നവും, C പ്രകാശവേഗതയുമാണ്‌. ഈ നിയമം മറ്റു കണ-പ്രതികണ ജോടികള്‍ക്കും ബാധകമാണ്‌.

ഡിറാക്കിന്റെ ഗണിതനിര്‍ധാരണം പൂര്‍ണമായും അംഗീകരിക്കുമ്പോഴും അദ്ദേഹത്തിന്റെ വ്യാഖ്യാനം-ഇലക്‌ട്രോണ്‍പൂരിത നെഗറ്റീവ്‌ ഊര്‍ജതലങ്ങള്‍ എന്നത്‌-ഇന്നു ശാസ്‌ത്രലോകം അംഗീകരിക്കുന്നില്ല. ഉന്നത ഊര്‍ജത്തിലുള്ള കൂട്ടിമുട്ടലുകളില്‍ കണ-പ്രതികണയുഗ്മങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടുകയാണ്‌ എന്നാണ്‌ ആധുനിക കണികാഭൗതികം പറയുന്നത്‌.

കണവും പ്രതികണവും തമ്മിലുള്ള കൂട്ടിമുട്ടല്‍ രണ്ടിന്റെയും നാശത്തില്‍ കലാശിക്കുകയും അവ ഊര്‍ജമായി രൂപാന്തരപ്പെടുകയും ചെയ്യുമ്പോള്‍ ഉല്‌പന്നമാകുന്ന ഊര്‍ജത്തിന്റെ അളവ്‌ 2moc2 തന്നെ ആയിരിക്കും. ഈ പ്രക്രിയ "യുഗ്മ ഉന്മൂലനം' (Pair annihilation) എന്നറിയപ്പെടുന്നു.

യുഗ്മോല്‌പാദനവും, യുഗ്മ ഉന്മൂലനവും പ്രകൃതിയില്‍ നിരന്തരം സംഭവിക്കുന്നുണ്ട്‌. 1956-ല്‍ ആന്റിപ്രോട്ടോണും, തുടര്‍ന്ന്‌ ആന്റിന്യൂട്രോണും കണ്ടുപിടിക്കപ്പെട്ടു. റേഡിയോ ആക്‌റ്റീവ്‌ മൂലകങ്ങളില്‍ "ബീറ്റാക്ഷയം' (Beta decay) വഴി ഇലക്‌ട്രോണിനോടൊപ്പം പുറത്തുവരുന്ന വിചിത്രമായ കണം ന്യൂട്രീനോ (neutrino)യുടെ പ്രതികണമായ "ആന്റി ന്യൂട്രിനോ' (anti neutrino) ആണെന്നും താമസിയാതെ ബോധ്യമായി.

പില്‌ക്കാലത്ത്‌ കണ്ടെത്തിയ നൂറുകണക്കിന്‌ പദാര്‍ഥകണങ്ങളിലോരോന്നിനും സമാനമായി അതിന്റെ പ്രതികണവും ഉണ്ടെന്ന്‌ വ്യക്തമായിട്ടുണ്ട്‌.

ഒരു കണത്തിന്‌ ദ്രവ്യമാനമോ (ഊര്‍ജമോ), ചക്രണമോ ഒഴികെ മറ്റു ഗുണവിശേഷങ്ങളൊന്നുമില്ലെങ്കില്‍ അതിന്റെ പ്രതികണം അതില്‍നിന്ന്‌ വ്യത്യസ്‌തമായിരിക്കുകയില്ല. ഉദാഹരണമായി ഫോട്ടോണ്‍ (γ),πo എന്നീ കണങ്ങള്‍ അതാതിന്റെ പ്രതികണങ്ങള്‍ കൂടിയാണ്‌. കണത്തിന്‌ വൈദ്യുത ചാര്‍ജ്‌, കാന്തികാഘൂര്‍ണം (magnetic moment) തുടങ്ങിയ മറ്റ്‌ ഗുണധര്‍മങ്ങളുണ്ടെങ്കില്‍ പ്രതികണത്തിന്‌ അവ നേരെ വിപരീതമായിരിക്കും. അതിനാല്‍ കണങ്ങളും പ്രതികണങ്ങളും വ്യത്യസ്‌തമാണ്‌. മെസോണുകളില്‍ π-, K- , Ko എന്നിവ യഥാക്രമം π+, K+ , Ko എന്നീ കണങ്ങളുടെയും, ബാരിയോണുകളില്‍ ∑,≡°, Λ° എന്നിവ ∑+,≡°, Λ° എന്നിവയുടെയും പ്രതികണങ്ങളത്ര. ന്യൂട്രോണി(n)ന്‌ വൈദ്യുത ചാര്‍ജ്‌ ഇല്ലെങ്കിലും കാന്തികാഘൂര്‍ണമുള്ളതിനാലാണ്‌ പ്രതികണം (n) അതില്‍നിന്ന്‌ ഭിന്നമായിരിക്കുന്നത്‌. പദാര്‍ഥകണവുമായി ചേരുമ്പോള്‍ യുഗ്മഉന്മൂലനം നടക്കുന്നു എന്നതാണ്‌ പ്രതികണങ്ങളുടെ തീര്‍ച്ചയുള്ള പരിശോധന.

പോസിട്രോണിയം(Positronium) . പോസിട്രോണും ഇലക്‌ട്രോണും കൂടിച്ചേരുമ്പോള്‍ രണ്ടും നാമാവശേഷമാകും. എന്നാല്‍ ഈ പ്രക്രിയ ആരംഭിക്കുന്നതിനു മുമ്പായി അവ തമ്മില്‍ ഒരു ബന്ധത്തിലേര്‍പ്പെട്ട്‌ മറ്റൊരു കണദ്വയം ഉണ്ടാകുന്ന സന്ദര്‍ഭങ്ങളും അപൂര്‍വമല്ല. അങ്ങനെ ഉണ്ടാകുന്ന ഒരു കണദ്വയമാണ്‌ പോസിട്രോണിയം. ഹൈഡ്രജന്‍ അണുവിന്റെ ഘടനയ്‌ക്കു സദൃശമാണ്‌ അതിന്റെ ഘടന; ഒരു ഘനഅണുകേന്ദ്രം ഇല്ലെന്നുമാത്രം. അതില്‍ പോസിട്രോണും ഇലക്‌ട്രോണും ഒരേ വേഗത്തില്‍ അന്യോന്യം പ്രദക്ഷിണം വയ്‌ക്കുന്നു.

കണ-പ്രതികണ അസന്തുലനം. പ്രപഞ്ചാരംഭത്തില്‍ ദ്രവ്യവും പ്രതിദ്രവ്യവും തുല്യഅളവില്‍ തന്നെ സൃഷ്‌ടിക്കപ്പെട്ടിരിക്കണം. എന്നാല്‍ പ്രപഞ്ചത്തില്‍ ഇന്നു നാം കാണുന്നത്‌ മിക്കവാറും മാറ്റര്‍ മാത്രമാണ്‌. എങ്ങനെ ഈ സ്ഥിതി സംജാതമായി? പ്രശസ്‌ത റഷ്യന്‍ ഭൗതിക ശാസ്‌ത്രജ്ഞന്‍ സഖറോഫ്‌ 1967-ല്‍ നല്‌കിയ വിശദീകരണം ശ്രദ്ധേയമാണ്‌. സഖറോഫിന്റെ പഠനങ്ങളില്‍നിന്നും മൗലിക കണങ്ങള്‍ക്കു ബാധകമായതും അടിസ്ഥാന സംരക്ഷണ നിയമ(conservation law)ങ്ങളിലൊന്നായി ഭൗതിക ശാസ്‌ത്രത്തില്‍ പ്രതിഷ്‌ഠനേടിയതുമായ CP-സിമട്രിയുടെ ലംഘനം (CP-violation) ഈ സ്ഥിതി വിശേഷത്തിലേക്കു നയിക്കാമെന്നു വ്യക്തമായി.

സഖറോഫ്

രണ്ടു ബൃഹത്തായ പരീക്ഷണപദ്ധതികള്‍ ഈ വിഷയത്തിന്റെ നിഷ്‌കര്‍ഷമായ പഠനത്തിനായി ഇപ്പോള്‍ നിലവിലുണ്ട്‌; ഒന്ന്‌, അമേരിക്കയില്‍ "സ്റ്റാന്‍ഫോര്‍ഡ്‌ ലീനിയര്‍ ആക്‌സിലറേറ്റര്‍ സെന്ററിലും(SLAC), മറ്റൊന്ന്‌ ജപ്പാനില്‍ "സുക്കുബ'(Tsukuba) യിലും. അടുത്തകാലത്ത്‌ കണ്ടെത്തിയ B-മെസോണുകളി(B-mesons)ലും അവയുടെ പ്രതികണങ്ങളിലും സംഭവിക്കുന്ന CP-ലംഘനം ആണ്‌ ഈ പരീക്ഷണങ്ങളില്‍ പഠന വിധേയമാക്കുന്നത്‌. എന്നാല്‍ ഇതിനകം നിരീക്ഷിക്കാന്‍ കഴിഞ്ഞ CP-ലംഘനം നമ്മുടെ പ്രപഞ്ചത്തിലെ മാറ്റര്‍-ആന്റീമാറ്റര്‍ അസന്തുലനം സഖറോഫ്‌ മോഡലിന്റെ അടിസ്ഥാനത്തില്‍ മനസ്സിലാക്കാന്‍ പര്യാപ്‌തമല്ലെന്നു പറയേണ്ടിയിരിക്കുന്നു.

പ്രതികണം പരീക്ഷണശാലയില്‍. സ്ഥൂല രൂപത്തിലുള്ള ആന്റീമാറ്ററോ ഒറ്റപ്പെട്ട ആന്റീആറ്റങ്ങള്‍ പോലുമോ പ്രകൃതിയില്‍ കാണുന്നില്ലെന്നു വരികിലും, പല മൗലിക കണങ്ങളുടെയും പ്രതികണങ്ങളുടെയും സാന്നിധ്യവും പ്രയോഗക്ഷമതയും ഉപയുക്തതയും തള്ളിക്കളയാനാവില്ല. റേഡിയോ ആക്‌ടീവത വഴി ചില മൂലകങ്ങളുടെ അണു കേന്ദ്രങ്ങളില്‍നിന്നും പോസിട്രോണുകള്‍ പുറത്തുവരുന്നുണ്ട്‌. പോസിട്രോണുകളെ ഉപയോഗപ്പെടുത്തിയുള്ള അത്യാധുനിക "മെഡിക്കല്‍ ഇമേജിങ്‌ ടെക്‌നോളജി' ആണ്‌ "പോസിട്രോണ്‍ എമിഷന്‍ ടോമോഗ്രാഫി'(PET) .

സ്റ്റാന്‍ഫോര്‍ഡ് ലീനിയര്‍ അക്സിലറേറ്റര്‍

കോസ്‌മിക്‌ രശ്‌മികളില്‍ ഏതാനും ആന്റീപ്രോട്ടോണുകള്‍ എപ്പോഴും ഉണ്ടായിരിക്കും. ഇടയ്‌ക്കിടെ രൂപപ്പെടുന്ന കോസ്‌മിക റേ ഷവറുകളി(cosmic ray showers)ല്‍ പ്രതികണങ്ങള്‍ ധാരാളമായി കാണാറുണ്ട്‌. ആന്റീമാറ്റര്‍ പ്രകൃതിയില്‍ ദുര്‍ലഭമാണെങ്കിലും അതേപ്പറ്റിയുള്ള പഠനങ്ങള്‍ക്ക്‌ കണഭൗതികജ്ഞര്‍(Particle Physicists) പരമമായ പ്രാധാന്യമാണ്‌ കല്‌പിക്കുന്നത്‌. കാരണം ഭൗതിക ശാസ്‌ത്ര നിയമങ്ങളിലേക്ക്‌ അതുല്യമായ ഉള്‍ക്കാഴ്‌ച നല്‌കാന്‍ അവ പര്യാപ്‌തമാണ്‌.

അമേരിക്കയില്‍, ഭൗതിക ശാസ്‌ത്രജ്ഞര്‍ 1955 മുതല്‍ "ലോറന്‍സ്‌-ബെര്‍ക്ക്‌ലി' നാഷണല്‍ ലാബിലെ ബീവാട്രണ്‍ (Bevatron) പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററില്‍ ഊര്‍ജസ്വലമായ പ്രോട്ടോണ്‍ ബീമിനെ ചെമ്പ്‌ തകിടില്‍ പതിപ്പിച്ച്‌ ആന്റിപ്രോട്ടോണ്‍ ഉത്‌പാദനം നിര്‍വഹിച്ചുവരുന്നു. ഇന്ന്‌ അത്യുന്നത ഊര്‍ജതലങ്ങളിലെ ഭൗതികവിജ്ഞാന പഠനത്തിനായി ബടേവിയയിലെ (ഇല്ലിനോയ്‌) "ഫെര്‍മി നാഷണല്‍ ആക്‌സിലറേറ്റര്‍ ലാബി' ലെ ഭീമാകാരമായ നാളികളിലൂടെ പ്രോട്ടോണ്‍, ആന്റീപ്രോട്ടോണ്‍ ബീമുകളെ വിപരീത ദിശകളില്‍ പായിച്ച്‌ പരസ്‌പരം സംഘട്ടനത്തിനു വിധേയമാക്കുന്നു,

ലാര്‍ജ് ഹൈഡ്രോണ്‍ കൊള്ളൈഡര്‍

1995 ജനു. 4-ാം തീയതി പാര്‍ട്ടിക്കിള്‍ ഫിസിക്‌സ്‌ ഗവേഷണത്തിനുള്ള യൂറോപ്യന്‍ ലാബറട്ടറി(CERN)യില്‍ നിന്നും ലോകത്ത്‌ ആദ്യമായി ആന്റീമാറ്ററിന്റെ സമ്പൂര്‍ണ ആറ്റം രൂപപ്പെടുത്താന്‍ കഴിഞ്ഞതായി പ്രഖ്യാപനമുണ്ടായി. ഇഋഞചലെ പാര്‍ട്ടിക്കിള്‍ ആക്‌സിലറേറ്ററിന്റെ സഹായത്തോടെ ഓയ്‌ലര്‍ടും (Oelert) സംഘവും ആന്റീഹൈഡ്രജന്റെ ഏതാനും ആറ്റങ്ങളാണ്‌ ഉത്‌പാദിപ്പിച്ചത്‌. സാധാരണ ഹൈഡ്രജന്‍ ആറ്റത്തിന്റെ കേന്ദ്രത്തില്‍ ഒരു പ്രോട്ടോണും, പുറമേ ഭ്രമണം ചെയ്യുന്ന ഒരു ഇലക്‌ട്രോണുമാണല്ലോ ഉള്ളത്‌. എന്നാല്‍ ആന്റിഹൈഡ്രജന്‍ ആറ്റത്തില്‍ വിപരീതചാര്‍ജ്‌ വാഹികളായ ആന്റിപ്രോട്ടോണും, പോസിട്രോണും ആയിരിക്കും ഉണ്ടാവുക.

മാറ്റര്‍-ആന്റിമാറ്റര്‍ സംഘട്ടനം ഭീമമായ തോതിലുള്ള ഊര്‍ജോല്‌പാദനത്തില്‍ കലാശിക്കുമെന്നുള്ളതിനാല്‍ ഒരു കാലത്ത്‌ നക്ഷത്രാന്തര റോക്കറ്റുകളിലെ ഇന്ധനമായും, സൂപ്പര്‍ ബോംബുകളുടെ നിര്‍മാണ വസ്‌തുവായും ഒരു പക്ഷേ ആന്റിമാറ്റര്‍ ഉപയുക്തമാകുമെന്ന്‌ സ്വപ്‌നം കാണുന്നവരുണ്ട്‌.

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍