This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

അങ്കഗണിതം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

10:56, 20 മാര്‍ച്ച് 2008-നു ഉണ്ടായിരുന്ന രൂപം സൃഷ്ടിച്ചത്:- Technoworld (സംവാദം | സംഭാവനകള്‍)

അങ്കഗണിതം

Arithmetic

വാസ്തവിക ധനസംഖ്യകളെയും അവയുടെ പ്രയോഗത്തെയും പറ്റി പ്രതിപാദിക്കുന്ന ഗണിതശാഖ. ബീജഗണിതത്തിന്റെ മുന്നോടിയാണ് ഇത്. അമൂര്‍ത്തമായ ഏറെ സങ്കല്പങ്ങള്‍ അങ്കഗണിതത്തിലില്ല. സാധാരണജീവിതത്തില്‍ ആവശ്യമായ ഗണിതമാണിത്. മനുഷ്യസംസ്കാരത്തിന്റെ ആവശ്യങ്ങളനുസരിച്ച് വികസിച്ചതാണ് ഈ ഗണിതശാഖ. ആടുമാടുകളുടെയും ആയുധങ്ങളുടെയും എണ്ണം തിട്ടപ്പെടുത്താന്‍ പ്രാചീനമനുഷ്യന് കഴിഞ്ഞിരുന്നില്ല. സംഖ്യാസമ്പ്രദായം അവന് പരിചയമില്ലായിരുന്നു. ഓരോന്നിനോടും ഇണങ്ങിച്ചേരുംവിധം (ഒന്നിനൊന്ന് അനുയോഗം) ഓരോ കല്ല് കണക്കിലെടുക്കുകയായിരുന്നിരിക്കണം അന്നു പതിവ്. ചെറിയവരകള്‍ ഉപയോഗിച്ചും കൈവിരലുകളില്‍ എണ്ണം പിടിച്ചും ഇന്നത്തെ രീതിയിലേക്ക് ആ ഗണനസമ്പ്രദായം പരിഷ്കരിക്കപ്പെട്ടു.

അങ്കഗണിതത്തിന് അരിത്മെറ്റിക് (Arithmetic) എന്നാണ് ഇംഗ്ളീഷിലുള്ള പേര്. സംഖ്യയെന്നര്‍ഥമുള്ള അരിത്മോസ് എന്ന ഗ്രീക്കുപദത്തിന്റെ തദ്ഭവമാണ് അരിത്മെറ്റിക്.

അങ്കഗണിതത്തില്‍ മൌലികമായി നാലു ക്രിയകളുണ്ട്: കൂട്ടല്‍ (സങ്കലനം), കുറയ്ക്കല്‍ (കിഴിക്കല്‍, വ്യവകലനം), ഗുണിക്കല്‍ (പെരുക്കല്‍, ഗുണനം), ഹരിക്കല്‍ (ഹരണം). ഇവയുടെ പ്രയോഗം, ഘടകക്രിയ, ലഘുതമസാധാരണഗുണിതം (ലസാഗു), ഉത്തമസാധാരണഘടകം (ഉസാഘ) എന്നിവയും ഭിന്നിതങ്ങളുടെ പ്രയോഗം, അനുപാതം, ത്രൈരാശികം, മാനനിര്‍ണയം, വ്യാവസായികഗണിതം, ശതമാനം, പലിശ, സ്റ്റോക് നിക്ഷേപങ്ങള്‍, ബില്‍ ഡിസ്ക്കൌണ്ട് -- എന്നീ പ്രായോഗികപ്രാധാന്യമുള്ള വിഷയങ്ങളുമാണ് അങ്കഗണിതത്തില്‍ പ്രതിപാദിക്കുന്നത്.

വ്യാവസായികകാര്യങ്ങളില്‍ ഇടപെടാനായി വേണ്ടത്ര ഗണിത പരിശീലനം കിട്ടുന്നതിനും യുക്തിപരീക്ഷണമെന്ന നിലയില്‍ മാനസികമായ അച്ചടക്കമുണ്ടാകുന്നതിനും അങ്കഗണിതം ആവശ്യമാണ്. ഗുണനപ്പട്ടിക ഹൃദിസ്ഥമാക്കുന്നതുകൊണ്ട് നിത്യോപയോഗമുള്ള കണക്കുകള്‍ എളുപ്പത്തില്‍ ചെയ്യാന്‍ കഴിയും.

ഗണിതചിഹ്നങ്ങളുടെ കണ്ടുപിടിത്തം. അങ്കഗണിതത്തില്‍ ഉപയോഗിക്കുന്ന ചിഹ്നങ്ങളാണ് +, –, ണ്മ, ÷ എന്നിവ. ഇവ യഥാക്രമം കൂട്ടല്‍, കുറയ്ക്കല്‍, ഗുണിക്കല്‍, ഹരിക്കല്‍ എന്നീ ഗണിതക്രിയകളെ സൂചിപ്പിക്കുന്നു. '+' എന്ന സങ്കലനചിഹ്നവും '–' എന്ന വ്യവകലനചിഹ്നവും ജോഹാന്‍ വിഡ്മാന്‍ എന്ന ഗണിതശാസ്ത്രജ്ഞന്‍ 1489-ല്‍ പ്രസിദ്ധം ചെയ്ത അങ്കഗണിതം (Arithmetic) എന്ന ഗ്രന്ഥത്തിലാണ് ആദ്യമായി അച്ചടിയില്‍ പ്രത്യക്ഷപ്പെട്ടതെന്ന് വിശ്വസിക്കപ്പെടുന്നു. ഇംഗ്ളീഷ് ഗണിതശാസ്ത്രജ്ഞനായ വില്യം ഔട്രഡ് (1574-1660) പ്രസിദ്ധപ്പെടുത്തിയ ക്ളാവിസ് മാത്തമാറ്റിക്ക (Clavis Mathematica, 1631) എന്ന ഗ്രന്ഥമാണ് '്x' എന്ന ഗുണനചിഹ്നം ഉള്‍ക്കൊള്ളുന്ന അച്ചടിഗ്രന്ഥങ്ങളില്‍ ഏറ്റവും പഴയതായി അറിയപ്പെടുന്നത്. 1668-ല്‍ ജോണ്‍പെല്‍ (1610-1685) ലണ്ടനില്‍ പ്രസിദ്ധംചെയ്ത ഒരു ഗ്രന്ഥത്തിലാണ് '÷' എന്ന ഹരണചിഹ്നം ആദ്യമായി പ്രയോഗിച്ചുകാണുന്നത്. '=' എന്ന സമചിഹ്നം ആദ്യമായി അച്ചടിച്ചുകണ്ടത് റോബര്‍ട്ട് റിക്കോര്‍ഡ് 1557-ല്‍ പ്രസിദ്ധം ചെയ്ത ആള്‍ജിബ്ര എന്ന ഗ്രന്ഥത്തിലാണ്.

ഘാതം (Exponent). ഒരു സംഖ്യയെ അതുകൊണ്ടുതന്നെ ഗുണിക്കുന്ന ക്രിയയെ സൂചിപ്പിക്കുന്ന സമ്പ്രദായമാണ് ഘാതക്രിയകൊണ്ടുദ്ദേശിക്കുന്നത്. ഉദാ. 2 x 2 x 2 = 23. ഇതില്‍ 2 പാദവും (base), 3 അതിന്റെ ഘാതവുമാണ്. ഘാതക്രിയാനിയമങ്ങള്‍ താഴെ ചേര്‍ക്കുന്നു:

Image:p159.png

ഓരോ ഘാതക്രിയയുടെയും വ്യാഖ്യാനം എഴുതി ഈ നിയമങ്ങള്‍ തെളിയിക്കാവുന്നതാണ്. നിസര്‍ഗസംഖ്യകളെ സംബന്ധിച്ച് ഇവ തെളിയിക്കാന്‍ ഈ മാര്‍ഗം സ്വീകാര്യമാണെങ്കിലും, ഭിന്നിതങ്ങളെയും ഋണാത്മകഘാതങ്ങളെയും സംബന്ധിച്ച് ചില വ്യാഖ്യാനങ്ങളുടെ അടിസ്ഥാനത്തില്‍ മാത്രമേ ഈ നിയമങ്ങള്‍ പ്രയോഗക്ഷമമാകുന്നുള്ളു. അഥവാ, ഈ നിയമങ്ങള്‍ സ്വീകാര്യമാകുന്നവിധത്തിലാണ് ഋണാത്മകഘാതം നിര്‍വചിക്കപ്പെട്ടിരിക്കുന്നത്. അതായത്, 2-8 എന്നു പറഞ്ഞാല്‍  ; 2°, എന്നുവേണ്ട ഏതു സ്ഥിരസംഖ്യയ്ക്കും (പൂജ്യം ഒഴികെ) 0 ഘാതമാണെങ്കില്‍ അതിന്റെ ഫലം 1 ആയിരിക്കും.

ബീജീയ നിയമങ്ങള്‍ (Algebraic laws). നിസര്‍ഗ സംഖ്യകളെ സംബന്ധിച്ചിടത്തോളം അപ്രധാനമാണെങ്കിലും ബീജഗണിതത്തില്‍ പ്രാധാന്യമുള്ള ഗണിതക്രിയാനിയമങ്ങളുണ്ട്; വിനിമേയനിയമം (Commutative law), സാഹചര്യനിയമം (Associative law), വിതരണനിയമം (Distributive law) എന്നിവ. വ്യത്യസ്തക്രിയകളെ ആധാരമാക്കി ഈ നിയമങ്ങള്‍ നിര്‍വചിക്കാവുന്നതാണ്. ഇവിടെ കൂട്ടല്‍, ഗുണിക്കല്‍ എന്നിവയെ സംബന്ധിച്ചു മാത്രമേ വ്യവഹരിക്കുന്നുള്ളു.

(i) വിനിമേയ നിയമം. പദങ്ങളുടെ (terms) ക്രമം മാറ്റിയിട്ടാലും ഫലത്തില്‍ മാറ്റമില്ല.

ഉദാ. 3 + 5 = 5 + 3 (സങ്കലന വിനിമേയനിയമം)

3 x 5 = 5 x 3 (ഗുണനാത്മക വിനിമേയനിയമം)

(ii) സാഹചര്യനിയമം. രണ്ടിലേറെപദങ്ങള്‍ (terms) തമ്മിലുള്ള ക്രിയയില്‍ ഈ രണ്ടെണ്ണം എടുത്തിട്ടാണ് ക്രിയ മുഴുമിപ്പിക്കുന്നത്. ആദ്യത്തെ രണ്ടെണ്ണം തമ്മിലുള്ള ക്രിയയ്ക്കുശേഷം ആ ക്രിയാഫലവും മൂന്നാമത്തെ പദവും തമ്മിലുള്ള ക്രിയ ചെയ്യുന്നു; ഇതിനുപകരം രണ്ടും മൂന്നും ചേര്‍ത്തതിനുശേഷം ആ ഫലവും ആദ്യത്തെ പദവും തമ്മില്‍ ക്രിയ ചെയ്യുന്നു. ഇങ്ങനെ രണ്ടു തരത്തില്‍ ചെയ്യുന്നതുകൊണ്ട് ഫലത്തില്‍ വ്യത്യാസം വന്നേക്കാം. എന്നാല്‍ നിസര്‍ഗസംഖ്യകളെ സംബന്ധിച്ച് വ്യത്യാസമില്ല.

Image:p160a.png

(iii) വിതരണ നിയമം. രണ്ടു ക്രിയകള്‍ ഉള്‍പ്പെടുന്നതാണ് ഈ നിയമം.

ഉദാ. 3 + (5+7) = 3 + 5 + 3 + 7

സാധാരണ സംഖ്യകളെ സംബന്ധിച്ചിടത്തോളം ക്രമവിനിമേയനിയമം, സാഹചര്യനിയമം, വിതരണനിയമം എന്നീ ബീജീയാശയങ്ങള്‍ക്കു വലിയ പ്രസക്തിയില്ല. പൂജ്യം കൊണ്ടുള്ള ഹരണമൊഴിച്ച് മറ്റെല്ലാ ക്രിയകളും ചെയ്യാവുന്നതാണ്. അങ്കഗണിതത്തില്‍ ഇവ എടുത്തുപറയേണ്ടതില്ല. വിപുലമായ ആധുനികഗണിതശാഖയായി അങ്കഗണിതം വളര്‍ന്നു വന്നിട്ടുള്ളതില്‍ ഈ നിയമങ്ങള്‍ക്കു പ്രാധാന്യമുണ്ട്.

ഘടകക്രിയ (Factorisation). ഏതു പൂര്‍ണസംഖ്യയും അതിന്റെ അവിഭാജ്യഘടകങ്ങളുടെ ഗുണിതമായി പിരിച്ചെഴുതാന്‍ കഴിയും. ഒന്നാം സ്ഥാനത്തെ അക്കം ഇരട്ടസംഖ്യയാണെങ്കില്‍ 2-ഉം അക്കങ്ങളുടെ ആകത്തുകയെ 3 കൊണ്ടു കൃത്യമായി ഹരിക്കാന്‍ കഴിയുമെങ്കില്‍ 3-ഉം ഒന്നാം സ്ഥാനത്ത് 0, 5 എന്നിവയാണെങ്കില്‍ 5-ഉം ഘടകമായിരിക്കും. ഇത്തരം സൂചനകള്‍കൊണ്ട് ഘടകങ്ങള്‍ കണ്ടുപിടിക്കാന്‍ കഴിയും.

ലസാഗു, ഉസാഘ (L.C.M.,G.C.D). നിര്‍ദിഷ്ടമായ സംഖ്യകള്‍ എല്ലാം ഘടകമായിരിക്കുന്ന ഏറ്റവും ചെറിയ സംഖ്യയാണ് ലഘുതമ സാധാരണ ഗുണിതം (ലസാഗു); ഈ സംഖ്യകളെ കൃത്യമായി ഹരിക്കാവുന്ന ഏറ്റവും വലിയ ഘടകമാണ് ഉത്തമ സാധാരണ ഘടകം (ഉസാഘ). ചുരുങ്ങിയത് രണ്ടെണ്ണത്തെയെങ്കിലും ഹരിക്കാവുന്ന ഘടകങ്ങള്‍ കണ്ടുപിടിച്ച് അവയെ ഗുണിച്ചാല്‍ ലസാഗു കിട്ടും. ഉദാ. ആദ്യത്തെ ഘടകം ആയ 2 ഉസാഘയും 2 x 2 x 8 x 5 x 9 = 1440 ലസാഗുവുമാണ്.

Image:p160b.png

ഭിന്നിതം (fraction). ഭിന്നിതങ്ങള്‍ രണ്ടുതരമുണ്ട്: ക്രമഭിന്നിതം, അക്രമഭിന്നിതം. ഹാര്യം ഹാരകത്തെക്കാള്‍ ചെറുതാണെങ്കില്‍, അഥവാ ഭിന്നിതത്തിന്റെ മൂല്യം ധനാത്മകവും 1-നേക്കാള്‍ കുറവുമാണെങ്കില്‍ ആ ഭിന്നിതം ക്രമവും മറിച്ചാണെങ്കില്‍ അക്രമവുമാണ്. രണ്ടു ഭിന്നിതങ്ങള്‍ കൂട്ടുമ്പോഴും കുറയ്ക്കുമ്പോഴും അവയുടെ ഹാരകങ്ങളുടെ ലസാഗുവിലേക്ക് രണ്ടു ഹാര്യങ്ങളും ക്രമപ്പെടുത്തുന്നു. ഗുണിക്കുമ്പോള്‍ ഹാര്യങ്ങള്‍ തമ്മിലും ഹാരകങ്ങള്‍ തമ്മിലും ഗുണിച്ചുകിട്ടുന്നവയുടെ ഭിന്നിതമായിരിക്കും ഫലം. ഹരിക്കുന്നതിന് ഹാരകഭിന്നിതത്തിന്റെ വ്യുത്ക്രമംകൊണ്ടു ഗുണിക്കുകയാണ് ചെയ്യുന്നത്. ഉദാ.

Image:p160.png

വര്‍ഗമൂലം, ഘനമൂലം (Square root,Cube root). 4 x 4 = 16, 2 x 2 x 2 = 8. അതുകൊണ്ട് 16-ന്റെ വര്‍ഗമൂലം 4, 8-ന്റെ ഘനമൂലം 2. 762129-ന്റെ വര്‍ഗമൂലവും 32768-ന്റെ ഘനമൂലവും കാണാം. ദശാംശബിന്ദുവില്‍നിന്ന് 2 അ ക്കങ്ങള്‍ വീതം ഇരുവശത്തേക്കും തുടര്‍ച്ചയായി അടയാളപ്പെടുത്തുക. 76-ല്‍ താഴെയുള്ള ഏറ്റവം വലിയ വര്‍ഗമാണ് 82 = 64. വലതുവശത്ത് 8 എഴുതുന്നു. 64 കഴിച്ച് ശിഷ്ടം 12. അടുത്ത രണ്ടക്കങ്ങള്‍ (21) താഴേക്കു ചേര്‍ത്തെഴുതുമ്പോള്‍ 1221 ആകുന്നു. 8-ന്റെ 2 ഇരട്ടി ഇടതുവശത്തെഴുതി 7-ഉം കൂടി 167 ആയി.

167-നെ 7 കൊണ്ടു ഗുണിക്കുമ്പോള്‍ 1221-ല്‍ താഴെ 1169 കിട്ടും; 168-നെ 8 കൊണ്ടു ഗുണിച്ചാല്‍ 1221-ല്‍ കവിയും. അതുകൊണ്ട് വലതുവശത്ത് 87 ആയി. വീണ്ടും ഇടതുവശത്ത് 87-ന്റെ 2 ഇരട്ടി 174 എന്നെഴുതുന്നു. 1743-നെ 3 കൊണ്ടു ഗുണിച്ചാല്‍ 5229 ആയി; 1744-നെ 4 കൊണ്ടു ഗുണിച്ചാല്‍ 5229-ല്‍ കവിയും. കൃത്യമായി നില്ക്കുന്നതിനാല്‍ 873 ആണ് വര്‍ഗമൂലം. കൃത്യമല്ലാതെ വന്നാല്‍ ഈ പ്രക്രിയ തുടര്‍ന്നു ചെയ്യാം.

ഘനമൂലം നിര്‍ണയിക്കുന്ന മാര്‍ഗം. സംഖ്യയുടെ ഒന്നാം സ്ഥാനം ഘനസ്ഥാനം; പിന്നെ രണ്ടു സ്ഥാനങ്ങള്‍ കഴിഞ്ഞാല്‍ വീണ്ടും ഘനസ്ഥാനം; പിന്നെ രണ്ടു സ്ഥാനങ്ങള്‍ കഴിഞ്ഞ് വീണ്ടും എന്നിങ്ങനെ തുടരുന്നു. ഇടത്തേ അറ്റത്തെ ഘനസ്ഥാന (32)ത്തുനിന്നു ഘനം 33 കളഞ്ഞു ശിഷ്ടം കാണുക. അടുത്ത ഒരു സ്ഥാനം താഴേക്കിറക്കുന്നു. 57 ആയി. വലതുവശത്തു ചേര്‍ത്ത സംഖ്യയുടെ വര്‍ഗ(32)ത്തെ 3 കൊണ്ടു ഗുണിച്ചുകിട്ടുന്ന 32 x 3 കൊണ്ട് 57-നെ ഹരിച്ചാലുണ്ടാകുന്ന ഹരണഫലം 2; അതുകൊണ്ട് 3-നെ 22 കൊണ്ട് ഗുണിച്ച് ആ സംഖ്യകൊണ്ട് 36-നെ ഹരിച്ചുണ്ടാകുന്ന ഫലം 3 കണ്ടുപിടിക്കുക. ഈ 3 കൊണ്ട് 3 x 22-നെ ഗുണിച്ച് 36-ല്‍ നിന്നു കുറയ്ക്കുന്നു. ശിഷ്ടം 0. അടുത്ത ഘനസ്ഥാനം 8 താഴേയ്ക്കിറക്കുന്നു. 23 ഈ 8-ല്‍ നിന്നു കുറയ്ക്കുമ്പോള്‍ ശിഷ്ടം 0 ആയതിനാല്‍ ഘനമൂലം 32 തന്നെ.

Image:p160b.png

അനുപാതം (Proportion). 3, 5 എന്നിവയുടെ അംശബന്ധവും (Ratio) 6, 10 എന്നിവയുടെ അംശബന്ധവും തുല്യമാണ്: . ഈ സംഖ്യകള്‍ ഒരേ അനുപാതത്തിലാണെന്നര്‍ഥം.

ത്രൈരാശികം. അനുപാതത്തെ ആധാരമാക്കിയാണ് ത്രൈരാശികം ചെയ്യുന്നത്. ഒരനുപാതത്തിലെ മൂലകങ്ങളില്‍ ഏതെങ്കിലും മൂന്നെണ്ണം അറിഞ്ഞാല്‍ നാലാമത്തേത് കണ്ടുപിടിക്കാം.

x/5=6/10, x = 6 x 5/10 =3

മാനനിര്‍ണയം (Mensuration). വസ്തുക്കളുടെ വിസ്തീര്‍ണം, ഘനമാനം, ചുറ്റളവ് എന്നിവ കണക്കാക്കുന്ന അങ്കഗണിതശാഖ. വ്യാസാര്‍ധം r ആയിട്ടുള്ള വൃത്തത്തിന്റെ പരിധി πr2, വിസ്തീര്‍ണം πr2; r സമതലവ്യാസാര്‍ധവും h ഉയരവുമുള്ള വൃത്തസ്തംഭത്തിന്റെ പ്രതലവിസ്തീര്‍ണം 2πrh + 2πr2; ഘനമാനം πr2h; r വ്യാസാര്‍ധവുമുള്ള ഗോളത്തിന്റെ പ്രതലവിസ്തീര്‍ണം 4πr2, ഘനമാനം 4/3πr3; h ഉയരവും l ചരിവുനീളവും r സമതല വ്യാസാര്‍ധവുമുള്ള സ്തൂപിക(cone)യുടെ പ്രതലവിസ്തീര്‍ണം πrl+ πr2; ഘനമാനം 1/3πr2h. ഈ വ്യഞ്ജകങ്ങള്‍ കണ്ടെത്തിയിട്ടുള്ളത് ബീജഗണിതം, കലനം എന്നീ ഗണിതശാഖകളിലൂടെയാണ്. പ്രായോഗികവശം മാത്രമേ അങ്കഗണിതത്തിലുള്ളു.

വ്യാവസായിക ഗണിതം. 100-ന് ഇത്രയെന്ന കണക്കാണ് ശതമാനം. % എന്ന ചിഹ്നംകൊണ്ടാണ് ശതമാനം രേഖപ്പെടുത്തുക. മുതല്‍ സംഖ്യ (P), n വര്‍ഷത്തേക്ക് r ശ.മാ. ലഘുപലിശയ്ക്കിട്ടാല്‍ മുതലും പലിശയും കൂടി P+ P x n x r/100 = P(1+nr/100)ആയിത്തീരും. കൂട്ടുപലിശയാണെങ്കില്‍ p(1+r/100)ആണ് പലിശയടക്കം മുതല്‍. അങ്കഗണിതനിയമങ്ങള്‍ പ്രയോജനപ്പെടുത്തി മറ്റു വ്യാവസായികഗണിതവും സാധിക്കുന്നു.

കൂട്ടല്‍, കുറയ്ക്കല്‍, ഗുണനം, ഹരണം, വര്‍ഗനിര്‍ണയം, വര്‍ഗമൂലനിര്‍ണയം, ഘനനിര്‍ണയം, ഘനമൂലനിര്‍ണയം എന്നീ എട്ടു ക്രിയകളെ ഭാരതീയരായ പൂര്‍വികന്മാര്‍ പരികര്‍മാഷ്ടകമെന്നു പറഞ്ഞിരുന്നു. ഭാസ്കരാചാര്യരുടെ ലീലാവതി എന്ന ഗണിതഗ്രന്ഥത്തില്‍ ഈ ക്രിയകള്‍ വിവരിച്ചിട്ടുണ്ട്. നോ: അംശബന്ധം, അനുപാതം; ആള്‍ജിബ്ര; മാനനിര്‍ണയം; ലീലാവതി; സംഖ്യാപദ്ധതികള്‍

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍