This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
അണു
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
അണു
അീാ
ഭൌതികപദാര്ഥങ്ങളുടെ അവിഭാജ്യാംശമെന്നു കരുതപ്പെട്ടിരുന്ന കണിക. ലേഖന സംവിധാനം
ക. പ്രാചീന സങ്കല്പങ്ങള്
കക. അണുസങ്കല്പത്തിനുള്ള രസതന്ത്ര തെളിവുകള്
കകക. ഡാള്ട്ടന് സിദ്ധാന്തം 1. അവോഗാഡ്രോ പരികല്പന 2. തന്മാത്രാഭാരം 3. അണുഭാരം
കഢ. അണു - തന്മാത്രകളുടെ വലുപ്പം 1. പ്രതലവലിവു രീതി 2. മാധ്യമുക്തപഥ രീതി 3. എണ്ണഫിലിം രീതി
ഢ. എക്സ്റേ വിഭംഗനം
ഢക. അണുവിന്റെ അസ്തിത്വത്തിന് മറ്റുതെളിവുകള് 1. ഇലക്ട്രോണ് 2. റേഡിയോ ആക്റ്റിവത 3. ബ്രൌണിയന് ചലനം 4. ന്യൂക്ളിയര് അണു 5. തോംപ്സണ് മാതൃക
ഢകക. ആല്ഫാ-കണ പ്രകീര്ണനം 1. റഥര്ഫോര്ഡ് മാതൃക 2. ബോര് അണുമാതൃക
ഢകകക. അണുസ്പെക്ട്രം 1. ബോര് അണു 2. ദീര്ഘവൃത്ത ഭ്രമണപഥ ഇലക്ട്രോണ് 3. ചക്രണ ക്വാണ്ടംസംഖ്യ 4. കാന്തിക ക്വാണ്ടംസംഖ്യ 5. പൌളി തത്ത്വം 6. മോസ്ലി നിയമം
കത. ഐസോടോപ് 1. പ്രോട്ടോണ്, ന്യൂട്രോണ് 2. ദ്രവ്യമാനസംഖ്യ
ത. ക്വാണ്ടം സിദ്ധാന്തം 1. ദെ ബ്രോയെ (ഡി ബ്രോഗ്ളി) നിയമം 2. അനിശ്ചിതത്വ തത്ത്വം
തക. അണുസംരചനയും ആവര്ത്തനപ്പട്ടികയും മ്യൂവോണ്-മെസോണ് അണുക്കള്
ക. പ്രാചീനസങ്കല്പങ്ങള്. പദാര്ഥഘടനയെക്കുറിച്ചുള്ള സങ്കല്പത്തിന് ഇരുപത്തഞ്ച് നൂറ്റാണ്ടിലധികം പഴക്കമുണ്ട്. പൌരാണിക ഭാരതീയരും ഗ്രീക്കുകാരും ഇതിനെപ്പറ്റി പ്രതിപാദിച്ചിട്ടുണ്ട്. ഭാരതീയ ചിന്തകരില് പ്രമുഖന് ആയിരുന്ന 'കണാദന്' (ബി.സി. 6-5 ശ.) പദാര്ഥത്തിന്റെ ഏറ്റവും ചെറിയ അംശത്തെ 'അണു' എന്ന് വിളിച്ചു. ബി.സി. 5-ാം ശ.-ത്തിലാണ് ഗ്രീസില് 'അണുവാദികള്' ഉണ്ടായത്. ഈ കാലഘട്ടത്തില് ജീവിച്ചിരുന്ന ലൂസിപ്പസും അദ്ദേഹത്തിന്റെ ശിഷ്യനായ ഡമോക്രിറ്റസും ആയിരുന്നു ഇവരില് പ്രമുഖര്. പദാര്ഥങ്ങളെല്ലാം അവിഭാജ്യങ്ങളായ ചെറിയ കണങ്ങളെക്കൊണ്ടാണ് നിര്മിച്ചിരിക്കുന്നതെന്ന് ഡമോക്രിറ്റസ് അഭിപ്രായപ്പെട്ടു. ഈ അവിഭാജ്യ കണങ്ങളെ 'അത്തോമ' (വിഭജിക്കാന് കഴിയാത്തത്) എന്നു വിളിച്ചു. ഇതില്നിന്നാണ് ഇംഗ്ളീഷില് ആറ്റം (അീാ) എന്ന പദം ഉണ്ടായത്. ഡമോക്രിറ്റസിന്റെ അണുസിദ്ധാന്തത്തെ എപ്പിക്ക്യൂറസ് എന്ന ഗ്രീക്കു ചിന്തകനും പിന്താങ്ങിയിരുന്നു. 'വസ്തുക്കളുടെ പ്രകൃതം' എന്ന ലുക്രീഷ്യസിന്റെ കവിതയിലും ഈ അഭിപ്രായം നിഴലിച്ചു കാണാം.
അണുസിദ്ധാന്തം വളര്ച്ച പ്രാപിച്ചുകൊണ്ടിരുന്നകാലത്തുതന്നെയാണ് (ബി.സി. 5-ാം ശ.) എംപെഡോക്ള്സ് തന്റെ ചതുര്ഭൂതസിദ്ധാന്തം മുന്നോട്ടുവച്ചത്: ഈ പ്രപഞ്ചം മുഴുവനും അഗ്നി, വായു, പൃഥ്വി, ജലം എന്നീ നാലു ഭൂതങ്ങള്കൊണ്ടാണ് നിര്മിച്ചിരിക്കുന്നത്. സുപ്രസിദ്ധ ഗ്രീക്കുചിന്തകനായ അരിസ്റ്റോട്ടല് ഈ സിദ്ധാന്തത്തെ ശക്തമായി പിന്താങ്ങി. സര്വ വസ്തുക്കളിലും ഒരേ ബീജഭൂതം (വ്യഹല) ആണ് ഉള്ളത്. ഈ വസ്തുവിന് മൌലിക ഘടകങ്ങളായി നാലു ഗുണങ്ങള് ഉണ്ട്: ചൂട്, തണുപ്പ്, വരള്ച്ച, ഈര്പ്പം. ഈ ഘടകങ്ങളുടെ ഉള്ളടക്ക വ്യത്യാസമാണ് പദാര്ഥങ്ങളുടെ വൈവിധ്യത്തിനു കാരണം. അരിസ്റ്റോട്ടലിന്റെ ഈ സിദ്ധാന്തം 2,000 വര്ഷത്തോളം നിലനിന്നു. ഇതിനു സമാനമാണ് ഭാരതീയരുടെ പഞ്ചഭൂതസിദ്ധാന്തം. ഇതനുസരിച്ച് പ്രപഞ്ചത്തിലുള്ള എല്ലാ പദാര്ഥങ്ങളും അഗ്നി, വായു, ജലം, പൃഥ്വി, ആകാശം എന്നീ അഞ്ചു ഭൂതങ്ങള്കൊണ്ടാണ് നിര്മിച്ചിരിക്കുന്നത്.
അരിസ്റ്റോട്ടലിന്റെ എതിര്പ്പുകളെ അതിജീവിക്കാന് ഡമോക്രിറ്റസിന്റെ അണുസിദ്ധാന്തത്തിനു കഴിഞ്ഞില്ല. അങ്ങനെ പല ശതകങ്ങളോളം സുഷുപ്തിയിലാണ്ട അണുസങ്കല്പം നവോത്ഥാനകാലത്തിനുശേഷമാണ് യൂറോപ്പില് പുനരുജ്ജീവിച്ചത്. 16-ഉം 17-ഉം ശ.-ങ്ങളില് ഗലീലിയോ ഗലീലി, റെനേ ദെകാര്ത്തെ, ഫ്രാന്സിസ് ബേക്കണ്, റോബര്ട്ട് ബോയ്ല്, ഐസക് ന്യൂട്ടണ് തുടങ്ങിയ ശാസ്ത്രജ്ഞന്മാരും ദാര്ശനികരും പദാര്ഥം സാന്തം (ളശിശലേ) അല്ലെന്നും പ്രത്യുത അണു എന്ന പരമകണങ്ങള്കൊണ്ട് ഉണ്ടാക്കപ്പെട്ടതാണെന്നും ഉള്ള അഭിപ്രായക്കാരായിരുന്നു.
കക. അണുസങ്കല്പത്തിനുള്ള രസതന്ത്ര തെളിവുകള്. സ്പെയ്സും, ദ്രവ്യവും സാന്തം ആണെന്ന് ഉദ്ഘോഷിച്ചിരുന്ന അരിസ്റ്റോട്ടലിന്റെ സിദ്ധാന്തമായിരുന്നു മധ്യകാലഘട്ടത്തില് പദാര്ഥഘടനയെക്കുറിച്ച് നിലവിലിരുന്നത്. ഏതു വസ്തുവിന്റെയും മൌലിക ഘടകങ്ങളായ ചൂട്, തണുപ്പ്, വരള്ച്ച, ഈര്പ്പം എന്നിവയുടെ ഉള്ളടക്കം വ്യത്യാസപ്പെടുത്തി പുതിയ വസ്തുക്കള് ഉണ്ടാക്കാനുള്ള ശ്രമത്തിലാണ് അക്കാലത്ത് രസതന്ത്രജ്ഞര് ഏര്പ്പെട്ടിരുന്നത്. ഈ ഉള്ളടക്കം വ്യത്യാസപ്പെടുത്തലായിരുന്നു രസവാദിക(അഹരവലാശ)ളുടെ ലക്ഷ്യം. പരിമാണാത്മക രസതന്ത്രത്തിന്റെ വളര്ച്ചയോടെയാണ് പദാര്ഥഘടനയെക്കുറിച്ചുള്ള പരസ്പരവിരുദ്ധചിന്താഗതികളെ വിലയിരുത്താന്വേണ്ട പരീക്ഷണത്തെളിവുകള് ലഭിച്ചത്.
ആധുനിക അണുസിദ്ധാന്തത്തിന്റെ പ്രണേതാവ് ജോണ് ഡാള്ട്ടന് (1766-1844) ആണ്. മീഥേന്, എഥിലീന്, കാര്ബണ് മോണോക്സൈഡ്, കാര്ബണ്ഡൈഓക്സൈഡ് തുടങ്ങിയ വാതകങ്ങളുടെ സമന്വിത-ബഹുഗുണിതാംശബന്ധനിയമം (ങൌഹശുൃീേറൌര ൃമശീേ ൃൌഹല) നിര്ദേശിക്കാന് ഈ സിദ്ധാന്തം ഡാള്ട്ടനെ സഹായിച്ചു. അ എന്ന മൂലകം ആ എന്ന മൂലകവുമായി സംയോജിച്ച് രണ്ടോ അതിലധികമോ യൌഗികങ്ങള് ഉണ്ടാകുമ്പോള്, ഒരു നിശ്ചിത ഭാരത്തിലുള്ള അ-യുമായി സംയോജിക്കുന്ന ആ-യുടെ ഭാരങ്ങള് ലഘുപൂര്ണസംഖ്യകളുടെ അംശബന്ധത്തിലായിരിക്കുമെന്നതാണ് (ൃമശീേ ീള ശിലേഴലൃ) ബഹുഗുണിതാനുപാത നിയമം. രാസപ്രതിപ്രവര്ത്തനത്തില് പങ്കെടുക്കുന്ന മൂലകങ്ങളുടെ പരിമാണങ്ങളെപ്പറ്റിയുള്ള പഠനം നാലാമത്തെ രാസസംയോഗനിയമത്തിനു വഴിതെളിച്ചു. ഒരു മൂലകത്തിന്റെ ഒരേ ഭാരവുമായി പ്രതിപ്രവര്ത്തിക്കുന്ന രണ്ടു മൂലകങ്ങളുടെ ഭാരങ്ങള് തമ്മിലുള്ള അനുപാതം, ഇവ തമ്മില് പ്രതിപ്രവര്ത്തിക്കുമ്പോഴുള്ള ഭാരാനുപാതത്തിന് സമമോ അല്ലെങ്കില് അതിന്റ വേറെ ഗുണിതമോ ആയിരിക്കും.
കകക. ഡാള്ട്ടന് സിദ്ധാന്തം. രാസസംയോഗ നിയമങ്ങള് വിശദീകരിക്കാനായി ജോണ് ഡാള്ട്ടന് 1803-ല് നിര്ദേശിച്ച അണുസിദ്ധാന്തത്തിന്റെ അഭിഗൃഹീതങ്ങള് (ുീൌഹമലേ) താഴെ ചേര്ക്കുന്നു: (1) പദാര്ഥം അവിഭാജ്യങ്ങളായ അണുക്കള് അടങ്ങിയതാണ്; (2) ഒരു മൂലകത്തിന്റെ എല്ലാ അണുക്കളും ഭാരത്തിലും ഗുണധര്മങ്ങളിലും സര്വസമമാണ്; (3) വിവിധ മൂലകങ്ങള്ക്ക് വിവിധതരം അണുക്കളാണ് ഉള്ളത്; വിവിധ മൂലകങ്ങളുടെ അണുക്കള് ഭാരത്തില് വ്യത്യസ്തമാണ്; (4) അണുക്കള് അവിനശ്യമാണ്; രാസപ്രവര്ത്തനം അണുക്കളുടെ പുനഃക്രമീകരണം മാത്രമാണ്; (5) ലഘു അംശബന്ധത്തില് വിവിധമൂലകങ്ങള് സംയോജിച്ചാണ് രാസയൌഗികങ്ങള് ഉണ്ടാകുന്നത്. ഈ അഭിഗൃഹീതങ്ങളില്നിന്ന് രാസസംയോഗനിയമങ്ങള് വ്യുത്പാദിപ്പിക്കാവുന്നതാണ്.
ഡാള്ട്ടന്റെ അണുസിദ്ധാന്തം അപൂര്ണമായിരുന്നു. അണുക്കളുടെ ആ.ഭാ. നിര്ണയിക്കാനുള്ള മാര്ഗത്തിനുപോലും ഡാള്ട്ടന്റെ അഭിഗൃഹീതങ്ങള് പ്രയോജകീഭവിക്കുന്നില്ല. ഘടകമൂലകങ്ങളുടെ എത്ര അണുക്കള് വീതം ചേര്ന്നാണ് യൌഗികം ഉണ്ടാകുന്നതെന്ന് കണ്ടുപിടിക്കാന് ഡാള്ട്ടന് മാര്ഗമൊന്നുമില്ലായിരുന്നു. ഒരു യൌഗികം ഉണ്ടാകുമ്പോള് രണ്ടു മൂലകങ്ങള് ം1, ം2 ഗ്രാം വീതം ചേരുന്നുവെങ്കില് . ഇവിടെ അ1, അ2 മൂലകങ്ങളുടെ അണുഭാരവും ി1, ി2 സംയോജനത്തില് പങ്കെടുക്കുന്ന മൂലകഅണുക്കളുടെ എണ്ണവും ആണ്. ി1 : ി2 എന്ന അനുപാതം അറിഞ്ഞാല്ത്തന്നെ, അണുക്കളുടെ ആപേക്ഷികഭാരമേ നിര്ണയിക്കാനാവൂ. അതിനാല് അണുസിദ്ധാന്തം പ്രയോഗിക്കാന്വേണ്ടി ഡാള്ട്ടന് ചില സ്വേച്ഛാസങ്കല്പങ്ങള് ഉപയോഗിച്ചു: രണ്ടു മൂലകങ്ങള് സംയോജിച്ച് ഒരേയൊരു യൌഗികമേ ഉണ്ടാകുന്നുള്ളുവെങ്കില് ആ യൌഗികത്തില് രണ്ടു മൂലകങ്ങളുടെയും ഓരോ അണുക്കള് മാത്രമേ ഉണ്ടായിരിക്കുകയുള്ളു എന്ന്. ഹൈഡ്രജന് പെറോക്സൈഡ് അന്ന് അറിയപ്പെടാതിരുന്നതിനാല്, വെള്ളത്തെ ഒരു ഹൈഡ്രജന് അണുവും ഒരു ഓക്സിജന് അണുവും ചേര്ന്നുള്ള യൌഗികമായാണ് ഡാള്ട്ടന് കണക്കാക്കിയത്. ഡാള്ട്ടന്റെ തത്ത്വം ലളിതമെങ്കിലും തെറ്റായിരുന്നു. വികസിച്ചുകൊണ്ടിരുന്ന രസതന്ത്രത്തില് പല ബുദ്ധിമുട്ടുകള്ക്കും അത് വഴിവച്ചു.
വാതകങ്ങള് രാസപരമായി സംയോജിക്കുന്ന പ്രതിപ്രവര്ത്തനങ്ങളെപ്പറ്റി പഠനം നടത്തുന്നതിനിടയിലാണ് ഡാള്ട്ടന്റെ അണുസിദ്ധാന്തം ബുദ്ധിമുട്ടുകളെ നേരിട്ടത്. വാതകങ്ങള് തമ്മിലുള്ള സംയോജനത്തെ സംബന്ധിച്ച ഒരു നിയമം 1808-ല് ഗേലൂസാക് എന്ന ശാസ്ത്രജ്ഞന് കണ്ടുപിടിച്ചു. ഒരേ താപനിലയിലും മര്ദത്തിലും വാതകം അ, വാതകം ആ യുമായി പ്രതിപ്രവര്ത്തിച്ച് വാതകം ഇ ഉണ്ടാകുമ്പോള് അ, ആ, ഇ എന്നീ വാതകങ്ങളുടെ വ്യാപ്തപരമായ അംശബന്ധം (്ീഹൌാലൃശര ൃമശീേ) ലഘുപൂര്ണ സംഖ്യകള് ആയിരിക്കും. രണ്ട് ഉദാഹരണങ്ങള് താഴെ കൊടുക്കുന്നു: 1 വ്യാപ്തം ഹൈഡ്രജന് + 1 വ്യാപ്തം ക്ളോറിന് = 2 വ്യാപ്തം ഹൈഡ്രജന്ക്ളോറൈഡ്; 2 വ്യാപ്തം ഹൈഡ്രജന് + 1 വ്യാപ്തം ഓക്സിജന് = 2 വ്യാപ്തം നീരാവി. ഇതില്നിന്ന് സുപ്രധാനമായ ഒരു നിഗമനത്തിലെത്താന് കഴിയും. വാതകാവസ്ഥയിലുള്ള മൂലകങ്ങള് ലളിതമായ വ്യാപ്താനുപാതത്തിലും അണുക്കള് ലളിതാനുപാതത്തിലും സംയോജിക്കുകയാണെങ്കില്, ഒരേ വ്യാപ്തം പ്രതിപ്രവര്ത്തകവാതകങ്ങളിലുള്ള അണുക്കളുടെ എണ്ണങ്ങള് പരസ്പരം ബന്ധപ്പെട്ടിരിക്കണം. ഒരേ താപനിലയിലും ഒരേ മര്ദത്തിലും വിവിധ വാതകങ്ങളുടെ തുല്യവ്യാപ്തത്തിലുള്ള അണുക്കളുടെ എണ്ണം തുല്യമായിരിക്കുമെന്ന ആശയം ഡാള്ട്ടന് സ്വീകരിച്ചിരുന്നു. അതുപ്രകാരം 1 വ്യാപ്തം ഹൈഡ്രജന് (ി)+1 വ്യാപ്തം ക്ളോറിന് (ി) = 2 വ്യാപ്തം ഹൈഡ്രജന്ക്ളോറൈഡ് (2ി യൌഗിക അണുക്കള്). അതായത്, 1 ഹൈഡ്രജന് അണു + 1 ക്ളോറിന് അണു = 2 ഹൈഡ്രജന്ക്ളോറൈഡ് യൌഗിക അണുക്കള്. അല്ലെങ്കില് ഒരു ഹൈഡ്രജന്ക്ളോറൈഡ് യൌഗിക അണുവില് മ്മ ഹൈഡ്രജന് അണുവും മ്മ ക്ളോറിന് അണുവും ഉണ്ട്. അണുവിനെ വിഭജിക്കാമെന്ന ഈ നിഗമനം, അണു അവിഭാജ്യമാണെന്ന ഡാള്ട്ടന് സിദ്ധാന്തത്തിനു വിരുദ്ധമാകുന്നു.
1. അവോഗാഡ്രോ പരികല്പന. ഈ പ്രതിസന്ധി പരിഹരിക്കാന് 1811-ല് ഇറ്റാലിയന് ഭൌതികശാസ്ത്രജ്ഞനായ അവോഗാഡ്രോ, മൌലിക അണുക്കളും വാതകങ്ങളിലെ ഏറ്റവും ചെറിയ കണികകളും തമ്മില് വ്യവഛേദിച്ചാല് മതിയെന്ന് നിര്ദേശിച്ചു. അണുക്കള് ചേര്ന്നുണ്ടാകുന്ന ഈ വാതകകണങ്ങളെ അദ്ദേഹം തന്മാത്രകള് (ാീഹലരൌഹല) എന്നു വിളിച്ചു. മൂലകങ്ങളുടെ ഗുണധര്മങ്ങളും സ്വതന്ത്ര-അസ്തിത്വവുമുള്ള കണം അണുവല്ല, അണുക്കള് ഘടകങ്ങളായുള്ള തന്മാത്രകളാണ്. അങ്ങനെ ഗേലൂസാക്, ഡാള്ട്ടന് എന്നിവരുടെ ഗവേഷണഫലങ്ങളെ അവോഗാഡ്രോ കോര്ത്തിണക്കി. ഒരേ താപനിലയിലും മര്ദത്തിലും തുല്യവ്യാപ്തം വാതകങ്ങളില് തുല്യ എണ്ണം തന്മാത്രകള് ഉണ്ടെന്ന് അദ്ദേഹം നിര്ദേശിച്ചു. ഹൈഡ്രജന്, നൈട്രജന് തുടങ്ങിയ സാധാരണ വാതകങ്ങളുടെ തന്മാത്രകള് ദ്വിഅണുക (റശമീാശര)മാണെന്നും വെള്ളത്തിന്റെ തന്മാത്രയില് രണ്ടു ഹൈഡ്രജന് അണുക്കളും ഒരു ഓക്സിജന് അണുവും ആണ് ഉള്ളതെന്നും ഇതുമൂലം തെളിഞ്ഞു (നോ: അവോഗാഡ്രോ). അവോഗാഡ്രോനിര്ദേശത്തെ രൂക്ഷമായി വിമര്ശിച്ചത് ഡാള്ട്ടന് തന്നെയായിരുന്നു. ഒരേജാതി അണുക്കള് സംയോജിച്ച് തന്മാത്രകള് ഉണ്ടാകുന്നുവെന്ന സങ്കല്പം അദ്ദേഹത്തിനു സ്വീകാര്യമായിരുന്നില്ല. രണ്ടു ഹൈഡ്രജന് അണുക്കള് ചേര്ന്ന് തന്മാത്രയുണ്ടാകുന്നെങ്കില് എന്തുകൊണ്ട് ഹൈഡ്രജന് അണുക്കള് കൂടുതല് ചേര്ന്ന് ദ്രാവകമാകുന്നില്ല? വളരെ പ്രസക്തമായ ഈ ചോദ്യത്തിന് ഉത്തരം കിട്ടാന് ഒരു നൂറ്റാണ്ടോളം വീണ്ടും കാത്തിരിക്കേണ്ടിവന്നു.
2. തന്മാത്രാഭാരം (ങീഹലരൌഹമൃ ംലശഴവ). മൂലകങ്ങളുടെയും യൌഗികങ്ങളുടെയും തന്മാത്രാഭാരം നിര്ണയിക്കാന് അവോഗാഡ്രോസിദ്ധാന്തം വഴിയൊരുക്കി. ഒരേ താപനിലയിലും മര്ദത്തിലും 1 ലി. വാതകത്തിന്റെ ഭാരവും അത്രയും വ്യാപ്തം മാനകവാതകത്തിന്റെ ഭാരവും തമ്മിലുള്ള അനുപാതമാണ് വാതകത്തിന്റെ ആപേക്ഷികഘനത്വം. അതിനാല്, അവോഗാഡ്രോ പരികല്പനയനുസരിച്ച് രണ്ടു വാതകങ്ങളും ഒരേ മര്ദത്തിലും ഒരേ താപനിലയിലും ആണെങ്കില് താഴെ പറയുന്നതു ശരിയായിരിക്കും:
ഹൈഡ്രജന്, ഓക്സിജന് എന്നീ വാതകങ്ങളെ മാനകവാതകങ്ങള് ആയി കണക്കാക്കാം. ഇവ ദ്വിഅണുകങ്ങളാണ്. ഹൈഡ്രജന്റെ അണുഭാരം സ്വേച്ഛാകല്പിതമായി 1 എന്ന് സ്വീകരിച്ചാല് തന്മാത്രാഭാരം = 2 ഃ ആപേക്ഷികഘനത്വം എന്നു ലഭിക്കുന്നു. ഒരു വാതകമൂലകത്തിന്റെ തന്മാത്രാഭാരം ഇപ്രകാരം നിര്ണയിക്കുമ്പോള് അതില്നിന്ന് ഒരു തന്മാത്രയിലുള്ള അണുക്കളുടെ എണ്ണം അറിയാന് കഴിയുന്നു. അതില്നിന്ന് മൂലകത്തിന്റെ ആപേക്ഷിക അണുഭാരം നിര്ണയിക്കാം.
3. അണുഭാരം (അീാശര ംലശഴവ). 1860-ലെ അന്താരാഷ്ട്ര അണുഭാര സമ്മേളനം ഡാള്ട്ടന്-അവോഗാഡ്രോ പദ്ധതി അംഗീകരിച്ചു. അതിനുശേഷം നിരവധി യൌഗികങ്ങളുടെ അതിസൂക്ഷ്മവിശ്ളേഷണഫലമായി അണുഭാരങ്ങളുടെ പട്ടിക തയ്യാറാക്കി.
അണുഭാരം ആപേക്ഷികഭാരമാണ്. അതിനാല് മൂലകങ്ങളില്വച്ച് ഏറ്റവും കനം കുറഞ്ഞ ഹൈഡ്രജന് ആണ് ആദ്യം മാനകവാതകമായി സ്വീകരിച്ചത്. പക്ഷേ, ഹൈഡ്രജന് യൌഗികങ്ങള് പരിമിതങ്ങളായതിനാലും ഓക്സിജനുമായി ചേര്ന്ന് മിക്ക മൂലകങ്ങളും യൌഗികങ്ങള് ഉണ്ടാക്കുമെന്നതിനാലും 1902-ല് ഓക്സിജന് (ഛ) മാനകവാതകമായി സ്വീകരിക്കുകയും ഓക്സിജന്റെ അണുഭാരം 16.000 എന്ന് നിശ്ചയിക്കുകയും ചെയ്തു. അതുവരെ ഓക്സിജന്റെ അണുഭാരം ഇതില്നിന്ന് അല്പം വ്യത്യസ്തമായിരുന്നു. തുടര്ന്ന് ഛ = 16.000 അടിസ്ഥാനമാക്കി അണുഭാരപ്പട്ടിക പരിഷ്കരിക്കപ്പെട്ടു.
ഡാള്ട്ടന് സങ്കല്പിച്ചതുപോലെ ഒരേ മൂലകത്തിന്റെ എല്ലാ അണുക്കളും സമഭാരികങ്ങള് അല്ലാത്തതിനാല് (നോ: ഐസോടോപ്പുകള്) രാസ-അണുഭാരം ശ.ശ. ഭാരം മാത്രമേ ആകുന്നുള്ളു. പ്രകൃതിയില് ഓക്സിജന്റെ സ്ഥാനീയങ്ങളുടെ സംഘടനം, വളരെ കൃത്യമായി പറഞ്ഞാല്, സ്ഥിരമല്ല. എങ്കിലും ഛ = 16.000 എന്ന തോതാണ് 1961 വരെ സ്വീകരിച്ചിരുന്നത്. ഓരോ അണുവിന്റെയും പെരുമാറ്റത്തിനാണ് ഭൌതികശാസ്ത്രത്തില് പ്രാധാന്യം. അതിനാല് ഏതെങ്കിലും ഒരു അണുവിന്റെ ഒരു പ്രത്യേകസ്ഥാനീയത്തിന്റെ ദ്രവ്യമാനത്തെ അടിസ്ഥാനമാക്കിവേണം അണുഭാരപ്പട്ടിക തയ്യാറാക്കുവാന്. കാര്ബണ് അണുവിന്റെ ഇ = 12.000 എന്ന സ്ഥാനീയമാണ് ഇതിന് മാനകം ആയി 1961-ല് സ്വീകരിച്ചത്. ഈ തോതിനെ കാര്ബണ്മാനകം എന്നു പറയുന്നു.
കഢ. അണു-തന്മാത്രകളുടെ വലുപ്പം. അണുക്കള് യഥാര്ഥത്തില് ഉണ്ടെന്നതിന് വ്യക്തവും ഭൌതികവും ആയ തെളിവുകള് നല്കാതെ അണുസിദ്ധാന്തത്തെ ഒരു പ്രവര്ത്തന പ്രക്രിയയായി മാത്രമേ ഇതുവരെ അവതരിപ്പിച്ചിട്ടുള്ളു. അണുവിന്റെ ശരിയായ വലുപ്പത്തെക്കുറിച്ചും ഭാരത്തെക്കുറിച്ചും വേണ്ടത്ര തെളിവുകള്കൂടി ലഭിച്ചാല് മാത്രമേ അണുസിദ്ധാന്തത്തിന് നിരാക്ഷേപമായ യുക്തിസഹത ലഭിക്കയുള്ളു. അണുക്കളുടെ സംയോഗംമൂലം തന്മാത്രകള് ഉണ്ടാകുന്നുവെന്ന് സങ്കല്പിക്കുകയാണെങ്കില്, രണ്ടോ മൂന്നോ അണുക്കള് ചേര്ന്ന് ഉണ്ടാകുന്ന തന്മാത്രയുടെ വലുപ്പം അണുവിന്റേതിനേക്കാള് വളരെയേറെ ആകാന് ഇടയില്ല.
1. പ്രതലവലിവുരീതി (ൌൃളമരല ലിേശീിെ ാീറലഹ). തന്മാത്രയുടെ വലുപ്പം ഏകദേശം കൃത്യമായി കണക്കു കൂട്ടിയത് തോമസ് യങ് എന്ന ഇംഗ്ളീഷ് ഭൌതികശാസ്ത്രജ്ഞനാണ്. ദ്രാവകങ്ങളുടെ പ്രതലബലവും വലിവുബലവും (ലിേശെഹല ൃലിഴവേ) ആധാരമാക്കിയാണ് യങ് തന്റെ നിഗമനങ്ങളിലെത്തിയത്. തന്മാത്രകളുടെ വലുപ്പം നിര്ണയിക്കാന് പ്രതലബലവും ദ്രാവകങ്ങളുടെ ബാഷ്പലീന താപവും (ഹമലിേ വലമ ീള ്മുീൌൃശമെശീിേ) ആണ് ജെ.ജെ. വാട്ടേഴ്സണ് ഉപയോഗപ്പെടുത്തിയത് (1845). അദ്ദേഹം കണക്കു കൂട്ടിയത് ഇങ്ങനെയാണ്: ഒരു ദ്രാവകപ്രതലത്തില് 1 ച.സെ.മീ. വിസ്താരം ഉണ്ടാക്കാന് വേണ്ട ഊര്ജമാണ് പ്രതലബലം; ഒരു ഗ്രാം ദ്രാവകത്തെ പൂര്ണമായി അതിന്റെ തിളനിലയില് ബാഷ്പമാക്കാന്, അതായത് തന്മാത്രകളെ വേര്തിരിക്കാന് വേണ്ട ഊര്ജം ബാഷ്പലീനതാപവും. തന്മാത്രകളെ റ വശമുള്ള ക്യൂബുകളായി സങ്കല്പിച്ചാല് ഢ വ്യാപ്തം ദ്രാവകത്തില് തന്മാത്രകള് ഉണ്ടായിരിക്കും. ഒരു തന്മാത്രയുടെ പാര്ശ്വതല വിസ്തീര്ണം 6റ2 ആയതിനാല് ആകെ തന്മാത്രകളുടെ വിസ്താരം ആണ്. അതിനാല് തന്മാത്രകളുടെ വിസ്താരം വര്ധിപ്പിക്കാന് ചെലവായ ഊര്ജം = പ്രതലബലം ണ്മ വിസ്താരം . ബാഷ്പ ലീനതാപം ഘ എങ്കില് ഢ വ്യാപ്തം ദ്രാവകം ബാഷ്പീകരിക്കാന് ചെലവഴിച്ച ഊര്ജം = ഢഘ. ഇവ രണ്ടും തുല്യമായതിനാല്, . അതായത്, . വെള്ളത്തിന് ട = 70 ഡൈന്/സെ.മീ. എന്നും എര്ഗ്/ഘ. സെ.മീ. എന്നും സ്വീകരിച്ചാല് റ = 2 ? 10 10 മീ. അതായത് ജലതന്മാത്രയുടെ വലുപ്പം 0.20 നാനോ മീ. എന്നു വരുന്നു (1 നാനോ മീ. = 109 മീ.)
2. മാധ്യമുക്തപഥരീതി (ങലമി ളൃലല ുമവേ ാീറലഹ). ഗതികസിദ്ധാന്ത നിഗമനങ്ങള് തന്മാത്രകളുടെ വേഗത്തെപ്പറ്റിയുള്ള പഠനത്തില് ഏറെ പ്രാധാന്യം അര്ഹിക്കുന്നു. മിക്ക തന്മാത്രകളുടെയും വേഗം 25ബ്ബഇ-ല് 300 മീറ്ററിലധികമാണ്. എങ്കിലും ഘനത്വംകൂടിയ കാര്ബണ് ഡൈഓക്സൈഡ് പോലുള്ള ഒരു വാതകം അന്തരീക്ഷത്തിലേക്കു തുറന്നുവച്ചിരുന്നാല് വായുവുമായുള്ള അതിന്റെ മിശ്രണം വളരെവേഗം നടക്കുന്നില്ലെന്നു പരീക്ഷണങ്ങള് തെളിയിച്ചിട്ടുണ്ട്. വളരെ കുറച്ചു ദൂരം മാത്രം സഞ്ചരിക്കുമ്പോഴേക്കും തന്മാത്രകള് തമ്മില് സംഘട്ടനം നടക്കുന്നതായിരിക്കണം അതിനു കാരണം. രണ്ടു അനുക്രമസംഘട്ടനങ്ങള്ക്കിടയില് ഒരു തന്മാത്ര സഞ്ചരിക്കുന്ന ശ.ശ. ദൂരമാണ് അതിന്റെ മാധ്യമുക്തപഥം. ഗതികസിദ്ധാന്തത്തില് തന്മാത്രകളെ കട്ടിയുള്ള ഗോളങ്ങളായി കല്പിച്ചിരിക്കുന്നു. ഒരു വ്യാപ്തമാത്ര(ൌിശ ്ീഹൌാല)യില് റ വ്യാസമുള്ള ി വാതക തന്മാത്രകളുണ്ടെങ്കില്, തന്മാത്രയുടെ മാധ്യമുക്തപഥം ??യ്ക്കുള്ള സമീകരണം ഇങ്ങനെയാണ് . ഢ വ്യാപ്തം വാതകത്തില് ഢി തന്മാത്രകള് ഉണ്ടായിരിക്കും. വാതകം ദ്രാവകമായി സംഘനിക്കുമ്പോള് വ്യാപ്തം ഢ ആണെങ്കില് തുല്യ ഗോളങ്ങളുടെ സങ്കുലന രീതി (ുമരസശിഴ ിമൌൃല) കണക്കിലെടുത്താല് ് = ഢിറ3 എന്നു തെളിയിക്കാം. അപ്പോള്, ്? = എന്നു കിട്ടുന്നു. മിക്ക വാതകങ്ങള്ക്കും ് = 0.005ഢ, ?? = 2 ? 108 മീ. ആയതിനാല് റ = 0.20 നാനോമീറ്റര് (നോ: അന്താരാഷ്ട്രമാത്രാ സമ്പ്രദായം) എന്നു കിട്ടുന്നു. തന്മാത്രകളുടെ വലുപ്പം ഏകദേശം 0.20 നാനോമീറ്റര് വരും. 1 ഘ.സെ.മീ. തന്മാത്രയില് ഏകദേശം 4.5 ? 1019 തന്മാത്രകള് ഉണ്ടെന്ന് ഈ തന്മാത്രാ വലുപ്പം ഉപയോഗിച്ച് 1865-ല് ജെ. ലോഷ്മിഡ്റ്റ് നിര്ണയിച്ചു. രസതന്ത്രജ്ഞരെ സംബന്ധിച്ചിടത്തോളം ഒരു ഗ്രാം വാതകത്തില്, അതായത് 22415 ഘ.സെ.മീ. വാതകത്തില് എത്ര തന്മാത്രകളുണ്ടെന്നുള്ള അറിവ് പ്രധാനമാണ്. ഈ അറിവ് ഓരോ മൂലക അണുവിന്റെയും കേവലഭാരം നിര്ണയിക്കാന് സഹായിക്കുന്നു. ഒരു ഗ്രാം തന്മാത്രയിലുള്ള അണുക്കളുടെ സംഖ്യയെ അവോഗാഡ്രോസംഖ്യ ചീ എന്നു പറയുന്നു. ഏറ്റവും പുതിയ വിധികളനുസരിച്ചുള്ള നിര്ണയപ്രകാരം അവോഗാഡ്രോസംഖ്യ 6.02252 ? 1023 ആണ്. ഇതില്നിന്ന് ഹൈഡ്രജന് അണുവിന്റെ ഭാരം = 1.673 ? 1027 കി.ഗ്രാം എന്നു കിട്ടുന്നു. ഏതു മൂലകത്തിലെ അണുവിന്റെയും കേവലഭാരം കാണാന് അതിന്റെ അണുഭാരത്തെ ഹൈഡ്രജന്-അണുഭാരം കൊണ്ട് ഗുണിച്ചാല് മതി.
3. എണ്ണഫിലിം രീതി (ഛശഹ ളശഹാ ാീറലഹ). വെള്ളത്തില് ലയിക്കാത്തതും ധ്രുവീയ-അന്ത്യ ഗ്രൂപ്പുകള് (ുീഹമൃ ലൃാേശിമഹ ഴൃീൌു) ഉള്ളതുമായ ഒലിയിക് അമ്ളം (ഛഹലശര മരശറ) പോലുള്ള ചില കാര്ബണികയൌഗികങ്ങള് ശുദ്ധജല പ്രതലത്തില് പരക്കുമെന്ന് 1891-ല് ഫ്രൌളിന് പോക്കല്സ് തെളിയിച്ചു. റാലിപ്രഭു, ഈ പരീക്ഷണം തുടര്ന്നു. ജലപ്രതലത്തിലേക്ക് ഒഴിക്കുന്ന ഒലിയിക് അമ്ളത്തിന്റെ അളവ് ഒരു പരിമാണത്തില് കുറവാണെങ്കില് വെള്ളത്തിന്റെ പ്രതലബലത്തില് കുറവുണ്ടാകുന്നില്ലെന്ന് 1899-ല് അദ്ദേഹം കണ്ടുപിടിച്ചു. ഈ പരിമാണത്തിന് ക്രാന്തികപരിമാണം (രൃശശേരമഹ ാലമൌൃല) എന്നു പറയുന്നു. ക്രാന്തികപരിമാണത്തില് കൂടുതലായാല് പ്രതലബലം കുറയുന്നതായും തെളിയിക്കപ്പെട്ടു. ജലപ്രതലത്തില് ഒലിയിക് അമ്ളത്തിന്റെ ഒരു സാന്ത ഏകതന്മാത്രാഫിലിം (ളശിശലേ ശിെഴഹല ാീഹലരൌഹല ളശഹാ) ഉണ്ടാകുമ്പോഴാണ് പ്രതലബലത്തില് മാറ്റംവരുന്നതെന്ന് അദ്ദേഹം അനുമാനിച്ചു. 1 ഘ.സെ.മീ. ഏകതന്മാത്രാഫിലിം ഉണ്ടാകാന് എത്ര ഒലിയിക് അമ്ളം വേണമെന്ന് പരീക്ഷണത്തിലൂടെ റാലിപ്രഭു നിര്ണയിച്ചു. ശുദ്ധ അമ്ളത്തിലും ഏകതന്മാത്രാഫിലിമിലും അമ്ളത്തിന്റെ ഘനത്വം തുല്യമാണെന്ന സങ്കല്പത്തില് അദ്ദേഹം അമ്ളതന്മാത്രയുടെ വലുപ്പം 1.00 നാനോമീറ്റര് ആണെന്നു കണ്ടു