This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
അന്തര്ഗണനം, ബാഹ്യഗണനം
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
അന്തര്ഗണനം, ബാഹ്യഗണനം
Interpolation Extrapolation
പരസ്പരബന്ധമുള്ള രണ്ടു ചരങ്ങളുടെ അറിയാവുന്ന മൂല്യങ്ങള്ക്കിടയില് ഒരു ചരത്തിന്റെ മൂല്യത്തിനനുസൃതമായി രണ്ടാമത്തേതിന്റെ മൂല്യം നിര്ണയിക്കുന്ന സ്ഥിതി വിവരശാസ്ത്രസമ്പ്രദായം; അറിയാവുന്ന മൂല്യങ്ങള്ക്കു പുറമേയുള്ള മൂല്യങ്ങളുടെ നിര്ണയനമാണ് ബാഹ്യഗണനം. ഉദാ. കാനേഷുമാരി കണക്കില്നിന്നും 1921, 1931, 1941, 1951, 1961 എന്നീ വര്ഷങ്ങളില് ഇന്ത്യയിലെ ജനസംഖ്യ യഥാക്രമം 20, 25, 29, 36, 40 കോടി വീതമാണെങ്കില്, 1956-ലെ ജനസംഖ്യ കണക്കാക്കി കണ്ടെത്തുന്ന സമ്പ്രദായം അന്തര്ഗണനവും 1965-ലേതു കാണുന്ന സമ്പ്രദായം ബാഹ്യഗണനവുമാണ്. ഒരു വാതകത്തിന്റെ താപനില (T)യും ഘനമാന(V)വും പരീക്ഷണത്തിലൂടെ അളക്കുന്നതായാല് അവയുടെ ഒരു ദ്വിചരപ്പട്ടിക(bivariate table) ഉണ്ടാകുന്നു. (Ti, Vi) എന്നിവ അനുയോഗമൂല്യജോടികള് ആയിരിക്കും (corresponding pairs of values). i= 1,2, ...., k എന്നാണെങ്കില്, ഇത്തരം സ ജോടികളുടെ ഇടയ്ക്ക് ഠശയുടെ അറിയാവുന്ന ഒരു മൂല്യത്തിന് അനുയോജ്യമായ ഢശ മൂല്യം എന്താണെന്ന് കണക്കാക്കാനുള്ള മാര്ഗമാണ് അന്തര്ഗണനം; ഇവയ്ക്കുപുറമേ Tiയുടെ ഒരു മൂല്യത്തിനനുസൃതമായ Viമൂല്യനിര്ണയം ബാഹ്യഗണനം. ബാഹ്യഗണനം അന്തര്ഗണനത്തെക്കാള് ക്ളേശകരമാണ്.
സംഖ്യാത്മകവിശ്ളേഷണ(Numerical analysis)ത്തില് ആണ് അന്തര്ഗണനത്തിന്റെ സാങ്കേതിക മാര്ഗങ്ങളെക്കുറിച്ച് പഠനം നടത്തുന്നത്.
ലേഖാ-ഗണനം
(Graphic method).
പരസ്പരബന്ധമുള്ള ചരങ്ങളുടെ അറിയാവുന്ന മൂല്യങ്ങള് വിശ്ളേഷകജ്യാമിതി (Analytical Geometry)യിലെ അക്ഷരേഖകളില് (axes of co-ordinate) പ്രതിനിധാനം ചെയ്യുന്നുവെങ്കില് അനുയോഗമൂല്യജോടികള് നിര്ദേശാങ്കങ്ങളാക്കി ബിന്ദുക്കള് കുറിക്കാന് കഴിയും. ചിത്രത്തില് വര്ഷവും ജനസംഖ്യയും രേഖപ്പെടുത്തിയിരിക്കുന്നു. ബിന്ദുക്കളെ അങ്കനം ചെയ്ത് ആ ബിന്ദുക്കളിലൂടെ ഒരു നിഷ്കോണവക്രരേഖ (smooth curve) വരച്ചാല് അതുപയോഗിച്ച്, 1956-ലെ ജനസംഖ്യ കാണാം. വര്ഷം രേഖപ്പെടുത്തിയ അക്ഷത്തിന് 1956-ന്റെ ബിന്ദുവിലൂടെ ലംബം വരച്ച്, ഈ ലംബം രേഖയില് മുട്ടുന്ന ബിന്ദുവരെയുള്ള നീളം അളന്നെടുത്ത് അതിന്നനുസൃതമായ ജനസംഖ്യ കാണാന് കഴിയും. 1965 ബിന്ദുവിലൂടെ വര്ഷാക്ഷത്തിനു ലംബമായി വരയ്ക്കുന്ന നേര്വരയില് മുട്ടുന്നവിധം വക്രരേഖയുടെ പൊതുവേയുള്ള ആക്കമനുസരിച്ച് നീട്ടിയാല്, ഈ ലംബത്തിന്റെ നീളത്തില്നിന്ന് 1965-ലെ ജനസംഖ്യയുടെ ഒരു മതിപ്പുസംഖ്യ (estimate) കിട്ടുന്നതാണ്. ഈ മാര്ഗം ശാസ്ത്രപരീക്ഷണങ്ങളിലും മറ്റു ഗവേഷണങ്ങളിലും ഉപയോഗിക്കാറുണ്ട്.
ഗണനഫോര്മുലകള്
പട്ടികയും മറ്റു ഫോര്മുലകളും ഉപയോഗിച്ചും അന്തര്ഗണനം സാധിക്കാവുന്നതാണ്. വിട്ടുപോയ കണ്ണി കൂട്ടിച്ചേര്ക്കുകയാണ് അന്തര്ഗണനംവഴി സാധിക്കുന്നത്. x, y എന്നിവ ക്രമത്തില് ആശ്രിതചര(depended variable)വും സ്വതന്ത്രചര(ശിറലുലിറലി ്മൃശമയഹല)വും ആണെങ്കില്, x-ന് 0, 1, 2, 3, 4,.... -ഉം അതനുസരിച്ച് y-ക്ക് u0, u1, u2, u3, u4, ....-ഉം സാധാരണയായി ചിഹ്നങ്ങള് ഉപയോഗിക്കാറുണ്ട്. അതുപോലെ -1, -2, -3, ... എന്നിവയ്ക്ക് അനുസരിച്ച് u-1, u-2, u-3..... എന്നിങ്ങനെയും. മുന്നോക്കവ്യത്യാസങ്ങള് ur+1 -ur ന് δur എന്നും δur+1 -δur ന് δ2 എന്നും δr+1 -δ2ur ന് δ3ur എന്നും ഈ ക്രമത്തില് തുടര്ന്നുള്ള വ്യത്യാസങ്ങള്ക്കും ചിഹ്നങ്ങള് ഉപയോഗിച്ചുവരുന്നു. ഇതനുസരിച്ച് താഴെയുള്ള വ്യത്യാസപ്പട്ടികയുണ്ടാക്കാവുന്നതാണ്.
വ്യത്യാസപ്പട്ടിക
ൌ ??ൌ ??2ൌ ? 3ൌ ???ൌ
ൌ2 ??ൌ2 ??2ൌ2 ??3ൌ2 ???ൌ2
ൌ1 ??ൌ1 ? 2ൌ1 ??3ൌ1 ???ൌ1
ൌ0 ??ൌ0 ??2ൌ0 ??3ൌ0
ൌ1 ??ൌ1 ? 2ൌ1
ൌ2 ?ൌ2 .... .... ....
ൌ3 ...... .... .... ....
ഈ പട്ടികയില് ഏതെങ്കിലുമൊരു കോളത്തില് ഒരേ മൂല്യം വന്നാല് അടുത്ത കോളം പൂജ്യം ആയിരിക്കും. അതുകൊണ്ട് ഒരേ മൂല്യം വരുന്ന കോളം എത്തുകയോ കൂടുതല് കോളം തയ്യാറാക്കാന് സാധിക്കാത്ത അവസ്ഥയിലെത്തുകയോ ചെയ്താല് പട്ടിക അവസാനിച്ചതായി കരുതാം.
അഭിക്രിയാപ്രതീകങ്ങള് (ട്യായീഹ ീള ീുലൃമശീിേ). ഋ, ? എന്നിവയാണ് സര്വസാധാരണമായ പ്രതീകങ്ങള്. ള(ഃ) എന്ന ഫലനത്തിന്റെ മൂല്യങ്ങള് ഃ-ന് മ, മ+1, മ+2, മ+3 എന്നിങ്ങനെയാകുമ്പോള് ള(മ), ള(മ+1), ള(മ+2) എന്നിങ്ങനെ തുടരുന്നതാണ്; ഇവ ക്രമത്തില് ഋ0 ള(മ), ഋ1ള(മ), ഋ2 ള(മ), ഋ3 ള(മ) എന്നെഴുതാം. ഇതില്നിന്നു ഋയുടെ അര്ഥം മനസ്സിലാക്കാം. ?ള(മ) = ള(മ+1) ള(മ),
?ള(മ+1) = ള(മ+2) ള(മ+1). ഋ1 നും ??ക്കും ഒരേ വിധത്തിലുള്ള ഫലമാണ്. അതായത്,
?ള(മ) = (ഋ1) ള(മ). ഈ ബന്ധമുപയോഗിച്ച് ?ി = (ഋ1)ി എന്നും ഋി = ???1)ി എന്നും സിദ്ധിക്കുന്നു.
ന്യൂട്ടന്റെ അന്തര്ഗണനഫോര്മുല
ൌമ+ി = ഋി ൌമ = (1+ ?)ി ൌമ
മ = 0 എന്നെടുത്താല് ന്യൂട്ടന്റെ 'മുന്നോക്കഫോര്മുല' (എീൃംമൃറ ളീൃാൌഹമ) താഴെ കാണുന്ന വിധത്തിലെഴുതാം:
ന്യൂട്ടന്റെ ഫോര്മുല പ്രയോഗിക്കുന്നതിനുള്ള ന്യൂനതകള് പരിഹരിച്ചുകൊണ്ട് ഗോസ്, ലഗ്രാഞ്ചെ, എവറെറ്റ് എന്നിവര് ഫോര്മുലകള് തയ്യാറാക്കിയിട്ടുണ്ട്. നോ: സംഖ്യാത്മകവിശ്ളേഷണം