This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

അവകലസമവാക്യം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)

Technoworld (സംവാദം | സംഭാവനകള്‍)
(പുതിയ താള്‍: =അവകലസമവാക്യം= Differential equation ഒരു ഗണിതശാസ്ത്രശാഖ. ഫലനങ്ങളും അവയുടെ...)
അടുത്ത വ്യത്യാസം →

09:12, 5 ഒക്ടോബര്‍ 2009-നു നിലവിലുണ്ടായിരുന്ന രൂപം

ഉള്ളടക്കം

അവകലസമവാക്യം

Differential equation


ഒരു ഗണിതശാസ്ത്രശാഖ. ഫലനങ്ങളും അവയുടെ അവകലജങ്ങളും (dirivatives) തമ്മിലുള്ള ബന്ധത്തെ കുറിക്കുന്ന സമവാക്യം. സാധാരണ അവകല സമവാക്യങ്ങള്‍ (Ordinary Differential Equations), ആംശിക അവകല സമവാക്യങ്ങള്‍ (Partial Differential Equations) എന്നീ വിഭാഗങ്ങളായി അവകല സമവാക്യങ്ങളെ തരം തിരിക്കാവുന്നതാണ്.


ആമുഖം

y = f(x) അഥവാ u = f(x,y,.....t) എന്ന ഒന്നോ അതിലധികമോ ചരങ്ങളുടെ ഒരു ഫലനം നേരിട്ടറിവില്ല; എന്നാല്‍ ളന്റെ അവകലജങ്ങള്‍ ഒരു സമവാക്യം അനുസരിക്കുന്നു എന്നറിയാം; ഈ നിലയില്‍ ഫലനം കണ്ടുപിടിക്കേണ്ട ആവശ്യം ശുദ്ധഗണിതത്തിലും പ്രയുക്തഗണിതത്തിലും പലപ്പോഴും ഉദ്ഭവിക്കുന്നു. ഉദാ. ഒരു വക്രത്തിന്റെ വക്രതാ-ആരം (radius of curvature) തന്നിരുന്നാല്‍ വക്രം കാണുക; ഒരു വസ്തുവിന്റെ സ്ഥാനവും പ്രവേഗവും ത്വരണ(acceleration)വും തമ്മില്‍ ബന്ധിപ്പിക്കുന്ന ഒരു സമവാക്യത്തില്‍നിന്നും അതിന്റെ ഗതി നിര്‍ണയിക്കുക; ഒരു റേഡിയോ ആക്ടീവ് പദാര്‍ഥത്തിന്റെ ക്ഷയനിരക്ക് അറിയാമെങ്കില്‍ അര്‍ധായൂസ് കാണുക; തുടങ്ങിയ പ്രശ്നങ്ങള്‍ നിര്‍ധാരണം ചെയ്യാന്‍ അവകല സമവാക്യങ്ങള്‍ പ്രയോജനപ്പെടുന്നു.

ഒരു സ്വതന്ത്രചരം മാത്രമുള്ള അവകല സമവാക്യങ്ങളെ [ഉദാ:y = f(x)] സാധാരണ അവകല സമവാക്യങ്ങള്‍ എന്നു പറയുന്നു. ഈ സമവാക്യങ്ങളുടെ സാമാന്യരൂപം F(x,y,y',y",y"'....y(n) = 0 എന്നാണ്. ്y യുടെ അവകലജങ്ങളാണ് y',y",y"'....y(n)

ചിത്രം:Screen Short

രണ്ടോ അതില്‍ കൂടുതലോ സ്വതന്ത്ര ചരങ്ങളുള്ള അവകല സമവാക്യങ്ങളെ [ഉദ. u = f(x,y,...,t)] ആംശിക അവകല സമവാക്യങ്ങള്‍ എന്നാണ് പറയുന്നത്. ഇവയുടെ സാമാന്യരൂപം F(x,y,u,ux,y,uxx,uxy= +uyy)= 0 അവകലജ കോടി (order), രണ്ട് ആയിട്ടുള്ളതും x,y എന്നീ രണ്ട് സ്വതന്ത്രചരങ്ങളുള്ളതുമായ സമവാക്യത്തിന്റെ സാമാന്യരൂപമാണിത്.

ചിത്രം:Screen Short


എന്നിവ u എന്ന ഫലനത്തിന്റെ ആംശിക അവകലജങ്ങളാണ്.

ഒന്നിലധികം ഫലനങ്ങളുടെ അവകലജങ്ങള്‍ ഉള്‍പ്പെട്ട സമവാക്യ വ്യൂഹങ്ങളും ഉണ്ടാകാം. അവ യൗഗപദിക (simultaneous) അവകല സമവാക്യങ്ങള്‍ എന്നറിയപ്പെടുന്നു.

ഒരു അവകലസമവാക്യത്തിലുള്ള അവകലജങ്ങളില്‍ ഏറ്റവും ഉയര്‍ന്ന അവകലജകോടി ആണ് ആ വാക്യത്തിന്റെ കോടി.

ചിത്രം:Screen Short


എന്നിവയുടെ കോടി ക്രമത്തില്‍ 1, 2 ആണ്. (അവകലസമവാക്യങ്ങള്‍ക്ക് ഡിഗ്രിയും നിര്‍വചിക്കാറുണ്ട്; അതത്ര പ്രധാനമല്ല).

അവകലസമവാക്യം അനുസരിക്കുന്ന ഫലനങ്ങള്‍ കണ്ടുപിടിക്കുന്ന ക്രിയയ്ക്ക് നിര്‍ധാരണം (solving) എന്നും നിര്‍ധരിച്ചു കിട്ടുന്ന ഫലത്തിനു നിര്‍ധാരം (solution) എന്നും പറയുന്നു.

നിര്‍ധാരണ തത്ത്വങ്ങള്‍

ആദ്യം സാധാരണ അവകല സമവാക്യങ്ങള്‍ ചര്‍ച്ച ചെയ്യാം. ഒരു n-ാം കോടി സമവാക്യത്തിന്റെ നിര്‍ധാരണത്തില്‍ n സമാകലന (integration) ക്രിയകള്‍ അന്തര്‍ഭവിച്ചിരിക്കുന്നു; ഓരോ സമാകലനവും ഓരോ അനിയതസ്ഥിരം (arbitrary constant) കൊണ്ടുവരികയും ചെയ്യും. അതിനാല്‍ n-ാം കോടി സമവാക്യത്തിന്റെ നിര്‍ധാരത്തില്‍ n സ്വതന്ത്ര അനിയത സ്ഥിരങ്ങള്‍ ഉള്‍പ്പെട്ടിരിക്കും.

[y = f(x,c1,c2.....,cnഎന്നപോലെ]. ഈ സാമാന്യനിര്‍ധാരം (General solution) ഒരൊറ്റ ഫലനമല്ല, ഒരു ഫലനകുലം (family of function) ആണ്. ഉദാ. y11 = x എന്നു തന്നിരുന്നാല്‍ നേരെ രണ്ടു സമാകലനംമൂലം

ചിത്രം:Screen Short

എന്നു സാമാന്യനിര്‍ധാരം കിട്ടും. അനിയതസ്ഥിരങ്ങള്‍ക്കു വില സ്വീകരിച്ചാല്‍ കിട്ടുന്ന ഓരോ ഫലനവും സമവാക്യത്തിന്റെ ഒരു വിശേഷനിര്‍ധാരം (Particular solution) ആണെന്നു പറയുന്നു. മേല്‍ ഉദാഹരണത്തില്‍ c1 = 2, c2 = 3 എന്നു സ്വീകരിച്ചാല്‍

ചിത്രം:Screen Short

എന്ന് ഒരു വിശേഷനിര്‍ധാരം കിട്ടുന്നു. ഇവിടെ സാമാന്യനിര്‍ധാരത്തില്‍പ്പെടാത്ത യാതൊരു ഫലനവും സമവാക്യം അനുസരിക്കയില്ലെന്ന് ഏറെക്കുറെ സ്പഷ്ടമാണ്.

എന്നാല്‍ എല്ലാ അവകലസമവാക്യങ്ങളും ഇങ്ങനെ നേരെ സമാകലിച്ചു നിര്‍ധരിക്കാവുന്നവയല്ല. ആ സ്ഥിതിയില്‍ ി അനിയതസ്ഥിരങ്ങള്‍ ഉള്‍പ്പെട്ട സാമാന്യനിര്‍ധാരം കിട്ടിയാലും, അതില്‍പ്പെടാത്ത മറ്റു നിര്‍ധാരങ്ങള്‍ ഇല്ലെന്നു തീരുമാനിച്ചുകൂടാ; ഉണ്ടാകാം എന്നു താഴെ ഒരു ഉദാഹരണത്തില്‍ കാണാം.

ഭൗതികശാസ്ത്രങ്ങളില്‍ അവകലസമവാക്യങ്ങള്‍ ഉപയോഗിക്കുന്നിടത്തെല്ലാംതന്നെ സാമാന്യനിര്‍ധാരമല്ല, ചില വ്യവസ്ഥകള്‍ അനുസരിക്കുന്ന വിശേഷനിര്‍ധാരങ്ങള്‍ ആണ് ആവശ്യം. ഉദാ. ഒരു രേഖയില്‍ സഞ്ചരിക്കുന്ന കണത്തിന്റെ ത്വരണം മ എന്നു തന്നിരുന്നാല്‍ അതിന്റെ ഗതി നിര്‍ണയിക്കാന്‍

ചിത്രം:Screen Short

എന്നു കണ്ടുവച്ചതുകൊണ്ടായില്ല; b,c എന്നിവ നിശ്ചയിക്കാന്‍ വേണ്ട ദത്തങ്ങള്‍ (data) കൂടി വേണം. t = 0 എന്ന നിമിഷത്തില്‍ അതായത് ആരംഭത്തില്‍, s = d, s' = v എന്നു കണത്തിന്റെ സ്ഥാനവും പ്രവേഗവും അറിയാമെങ്കില്‍

ചിത്രം:Screen Short

എന്നു നിര്‍ണയിക്കാം. d,v എന്നിവയെ ഇവിടെ പ്രാരംഭവിലകള്‍ (initial values) എന്നും; ഇവ ശരിയായി വരുന്ന നിര്‍ധാരം കണ്ടുപിടിക്കുന്നതിലുള്ള പ്രശ്നങ്ങളെ 'പ്രാരംഭ വിലപ്രശ്നങ്ങള്‍' എന്നും പറയുന്നു (ആംശിക അവകലസമവാക്യങ്ങളെ സംബന്ധിച്ചാകുമ്പോള്‍ അതിര്‍വിലകള്‍ -Boundary valuesഎന്നു പറയുകയാണ് പതിവ്).

അസ്തിത്വ പ്രമേയങ്ങള്‍

എല്ലാ അവകലസമവാക്യങ്ങള്‍ക്കും നിര്‍ധാരം ഉണ്ടായിരിക്കണമെന്നില്ല; സമവാക്യം അനുസരിക്കുന്ന യാതൊരു ഫലനവും ഇല്ലെന്നുവരാം.

ചിത്രം:Screen Short

എന്നു ശരിയാകുന്ന യാതൊരു y-ഉം ഇല്ല; കാരണം, അവകലജത്തിന് അവശ്യം ഉണ്ടായിരിക്കേണ്ട ഇടവില സ്വഭാവം (intermediate value property) സിഗ്നം ഫലനത്തിനില്ല. (x-ന്റെ വില 0 ത്തെക്കാള്‍ വലുതാണെങ്കില്‍ 1 ഉം, 0 ത്തെക്കാള്‍ ചെറുതാണെങ്കില്‍ 1 ഉം, 0 ആണെങ്കില്‍ 0 ഉം വിലവരുന്ന ഫലനത്തെ സിഗ്നം x എന്നു പറയുന്നു). ഇത്തരം പ്രത്യുദാഹരണങ്ങള്‍ എടുത്തുകാട്ടാനുണ്ടെന്നല്ലാതെ സാധാരണ കൈകാര്യം ചെയ്യേണ്ടിവരുന്നവയല്ലെങ്കിലും, അവകലസമവാക്യങ്ങള്‍ക്കു നിര്‍ധാരം ഉണ്ടായിരിക്കാന്‍ വേണ്ട വ്യവസ്ഥകള്‍ അറിഞ്ഞിരിക്കേണ്ടത് സിദ്ധാന്തദൃഷ്ടിയില്‍ ആവശ്യമാണ്. ഇത്തരം വ്യവസ്ഥകള്‍ നിര്‍ദേശിക്കുന്ന പ്രമേയങ്ങള്‍ അസ്തിത്വപ്രമേയങ്ങള്‍ (Existence theorems) എന്നറിയപ്പെടുന്നു. അതുപോലെതന്നെ തന്നിരിക്കുന്ന പ്രാരംഭവ്യവസ്ഥകള്‍ അനുസരിക്കുന്ന നിര്‍ധാരം ഒന്നിലധികമില്ലെന്ന് ഉറപ്പു വരുത്തുന്ന പ്രമേയങ്ങളും വേണ്ടിവരും. ഇവയ്ക്ക് ഏകമാത്രതാ പ്രമേയങ്ങള്‍ (Uniqueness theorems) എന്നു പറയുന്നു.

17-ാം ശ.-ത്തില്‍ ന്യൂട്ടനും ലൈബ്നിസും കലനം എന്ന ഗണിതശാഖ വളര്‍ത്തിയെന്നു പറയപ്പെടുന്ന കാലം മുതല്‍ അവകല സമവാക്യങ്ങള്‍ പഠിച്ചും ഉപയോഗിച്ചും പോന്നിരുന്നെങ്കിലും 1820-ല്‍ ആണ് ആദ്യമായി ഒരു അസ്തിത്വപ്രമേയം സ്ഥാപിക്കപ്പെട്ടത്. കോഷി എന്ന ഗണിതശാസ്ത്രജ്ഞനാണ് ഇതിന്റെ ഉപജ്ഞാതാവ്. പിന്നീട് നിര്‍ധാരണരീതികള്‍ പോലെതന്നെ ഏകമാത്രതാ അസ്തിത്വപ്രമേയങ്ങളും അവകലസമവാക്യപഠനത്തില്‍ പ്രാധാന്യം അര്‍ഹിക്കുന്നു.

നിര്‍ധാരണം

ഏത് അവകല സമവാക്യവും നിര്‍ധരിക്കാന്‍ തക്ക യാതൊരു സാമാന്യരീതിയും ഇല്ല. ഒട്ടേറെ മാനകരൂപങ്ങള്‍ക്ക് നിര്‍ധാരണരീതികള്‍ ഏര്‍പ്പെടുത്തിയിട്ടുണ്ട്. മറ്റുള്ളവയ്ക്കു മനോധര്‍മത്തെ ആശ്രയിക്കയേ തരമുള്ളു. പ്രായോഗിക പ്രശ്നങ്ങളില്‍ ഏകദേശനം (approximation) വഴി ഇഷ്ടഫലനം (desired function) കാണാനുള്ള രീതികളും ആവിഷ്കരിക്കപ്പെട്ടിട്ടുണ്ട്.

ഒന്നാം കോടി സമവാക്യങ്ങള്‍

ഒന്നാം കോടി സമവാക്യത്തിന്റെ സാമാന്യരൂപം F(x,y,y') = 0 എന്നാണ്. നിര്‍ധരിച്ച് y' കാണാമെങ്കില്‍, y' = f (x,y) എന്ന രൂപം കിട്ടും. ഈ സാമാന്യരൂപത്തില്‍ ഒന്നാം കോടി സമവാക്യം പോലും നിര്‍ധരിക്കാന്‍ മാര്‍ഗമില്ല. ചില പ്രത്യേക രൂപത്തിലുള്ളവയ്ക്കു നിര്‍ധാരണരീതികള്‍ താഴെ സൂചിപ്പിക്കുന്നു.

ചരങ്ങള്‍ വേര്‍പെടുത്താവുന്നവ

M dx = N dy,M x-ന്റെ ഫലനം, N y യുടെ ഫലനം. ഇതാണ് സമവാക്യം എങ്കില്‍, നേരെ സമാകലിച്ച്

ചിത്രം:Screen Short

എന്നു കാണാം. ഇവിടെ വരുന്ന സമാകലങ്ങള്‍ സാധാരണ ഫലനങ്ങളായി എഴുതുന്നത് ക്ളേശകരമോ, ചിലപ്പോള്‍ അസാധ്യമോ, ആണെന്നു വരാം. എങ്കിലും, നിര്‍ധാരം സമാകലരൂപത്തില്‍ എഴുതാന്‍ കഴിഞ്ഞാല്‍ നിര്‍ധാരണം ഏറെക്കുറെ പൂര്‍ത്തിയായി. ആവശ്യമെങ്കില്‍ സമാകലലക്ഷണങ്ങള്‍ ഉപയോഗിച്ച് സംഖ്യാത്മകരീതിയില്‍ നിര്‍ധാരഫലനത്തെപ്പറ്റി അറിയേണ്ട കാര്യങ്ങള്‍ ഏകദേശം കാണുകയും ചെയ്യാം. ഇതിനും പുറമേ പലപ്പോഴും y = f(x,c)എന്നു പ്രത്യക്ഷഫലനരൂപത്തില്‍ നിര്‍ധാരം എഴുതാന്‍ കഴിഞ്ഞില്ലെന്നു വരാം. f(x,y,c) = 0 എന്ന് x-ന്റെ പരോക്ഷഫലനമായിട്ട് y കണ്ടാലും നിര്‍ധാരണം പൂര്‍ത്തിയായി എന്നു കരുതാം.

ഒരു ചരം പ്രത്യക്ഷത്തില്‍ ഉള്‍പ്പെടാത്തവ

y'=f(x)അഥവാ y' = f(y). ഇവിടെ ചരങ്ങള്‍ വേര്‍പെടുത്താന്‍ കഴിയുന്നു.

രേഖീയ രൂപം

Linear Form y' + Py = Q;P,Q xന്റെ ഫലനങ്ങള്‍. ഇഷ്ടഫലനവും അവകലജവും രേഖീയ ചേരുവ(linear combination)യില്‍ മാത്രം വരുന്നതാണ് രേഖീയം എന്ന പേരിനു ഹേതു; ചേരുവയിലെ ഗുണാങ്കങ്ങള്‍ x-ന്റെ മാത്രം ഫലനങ്ങളായിരിക്കയും വേണം. ഇവിടെ

ഇരുവശത്തും ചിത്രം:Screen Shortകൊണ്ടു ഗുണിച്ചാല്‍

ചിത്രം:Screen Short


എന്നാകും. ഇടതുവശത്തെ രണ്ടാമത്തെ പദം y യുടെ അവകലജമാണ്; വലതുവശം x-ന്റെ മാത്രം ഫലനവും. അതിനാല്‍ സമാകലിച്ച്,

ചിത്രം:Screen Short

എന്ന് സാമാന്യനിര്‍ധാരം ഉണ്ടാക്കുന്നു. തന്ന സമവാക്യം നേരെ സമാകലിക്കാന്‍ ഇവിടെ നിവൃത്തിയില്ല. കാരണം, ഇടതുവശത്ത് xഉം x-ന്റെ അജ്ഞാതഫലനം y-ഉം ഉള്‍പ്പെട്ടിരിക്കുന്നു. എന്നാല്‍ കൊണ്ടു ഗുണിച്ചുകഴിഞ്ഞാല്‍, y എന്തായാലും, ഇടതുവശം നേരെ സമാകലിക്കാവുന്ന രൂപത്തിലായി. ഇത്തരം ഗുണകങ്ങള്‍ക്ക് സമാകലനഗുണകങ്ങള്‍ (integrating factor) എന്നാണ് പേര്.

ബെര്‍ണോലി സമവാക്യം എന്നു പേരുള്ള

ചിത്രം:Screen Short


എന്ന രൂപം z = y1-nഎന്ന ചരം-മാറ്റം (transformation) മൂലം രേഖീയ രൂപത്തിലാക്കി നിര്‍ധരിക്കാം.

സമഘാത (Homogeneous) സമവാക്യം

M dy = N dx,M,N എന്നിവ രണ്ടും ഒരേ ഡിഗ്രിയിലുള്ള x,y-യുടെ സമഘാതഫലനങ്ങള്‍. ഇത് y= vx എന്ന പ്രതിഷ്ഠാപനം (substitution) മൂലം ചരങ്ങള്‍ വേര്‍പെടുത്താവുന്ന രൂപത്തിലാക്കി നിര്‍ധരിക്കാം.

ക്ളേയ്റോ സമവാക്യം

y = p x + f(p),p = y' (ഇവിടെ p എന്നത് എഴുതാന്‍ സൌകര്യത്തിനുവേണ്ടി മാത്രമാണു സ്വീകരിക്കുന്നത്).

ചിത്രം:Screen Short

എന്ന സാമാന്യനിര്‍ധാരം സിദ്ധിക്കുന്നു. അതേ സമയം, (1), (4) എന്നിവയില്‍നിന്ന് p ഒഴിവാക്കിയാല്‍ കിട്ടുന്ന ഫലവും ഒരു നിര്‍ധാരം ആണ്. ഇതാണ് വിചിത്ര നിര്‍ധാരം (Singular solution). സാമാന്യനിര്‍ധാരത്തില്‍ c-യ്ക്ക് വില സ്വീകരിച്ചാല്‍ കിട്ടാവുന്നതല്ല വിചിത്രനിര്‍ധാരം എന്ന് താഴെ ചേര്‍ക്കുന്ന ഉദാഹരണം വ്യക്തമാക്കുന്നു.

ചിത്രം:Screen Short

എന്ന ക്ലെയ്റോ സമവാക്യത്തിന്റെ സാമാന്യനിര്‍ധാരം

ചിത്രം:Screen Short

ആണ്; c-യ്ക്ക് എന്തു വില സ്വീകരിച്ചാലും വിചിത്ര നിര്‍ധാരമായ

ചിത്രം:Screen Short


സിദ്ധിക്കുകയില്ല.

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍