This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

അനന്തശ്രേണി

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(New page: = അനന്തശ്രേണി = കിളശിശലേ ലൃെശല ഗണിതശാസ്ത്രത്തില്‍, അനവസാനമായി തുടര്‍...)
വരി 1: വരി 1:
-
= അനന്തശ്രേണി  =
+
= അനന്തശ്രേണി  =
-
 
+
Infinite series 
-
കിളശിശലേ ലൃെശല
+
-
 
+
ഗണിതശാസ്ത്രത്തില്‍, അനവസാനമായി തുടര്‍ന്നുപോകുന്ന അനുക്രമപദങ്ങള്‍ (ലൂൌെലിരല ീള ലൃാേ) + (അധികം), – (ന്യൂനം) എന്നീ ക്രിയാചിഹ്നങ്ങള്‍കൊണ്ട് ഘടിപ്പിച്ചാലുണ്ടാകുന്ന വാക്യം. 1, 2, 3...., ി, ... ഏറ്റവും ലളിതമായ അനുക്രമമാണിത്.
ഗണിതശാസ്ത്രത്തില്‍, അനവസാനമായി തുടര്‍ന്നുപോകുന്ന അനുക്രമപദങ്ങള്‍ (ലൂൌെലിരല ീള ലൃാേ) + (അധികം), – (ന്യൂനം) എന്നീ ക്രിയാചിഹ്നങ്ങള്‍കൊണ്ട് ഘടിപ്പിച്ചാലുണ്ടാകുന്ന വാക്യം. 1, 2, 3...., ി, ... ഏറ്റവും ലളിതമായ അനുക്രമമാണിത്.
-
1 + 2 + 3 + ... + ി + ...  =  ;
+
1 + 2 + 3 + ... + n + ...  =  ;
വരി 16: വരി 14:
-
എന്നിവയുടേത് അനന്തമല്ല. ആദ്യത്തെ തരത്തിന് അപകേന്ദ്രശ്രേണി (ഉശ്ലൃഴലി ലൃെശല) എന്നും രണ്ടാമത്തേതിന് അഭികേന്ദ്രശ്രേണി (ഇീി്ലൃഴലി ലൃെശല) എന്നും പറയുന്നു.
+
എന്നിവയുടേത് അനന്തമല്ല. ആദ്യത്തെ തരത്തിന് അപകേന്ദ്രശ്രേണി (Divergent series) എന്നും രണ്ടാമത്തേതിന് അഭികേന്ദ്രശ്രേണി (Convergent series) എന്നും പറയുന്നു.
-
  ഏതെങ്കിലുമൊരു പദത്തോട് ഒരു സ്ഥിരസംഖ്യ തുടര്‍ച്ചയായി ചേര്‍ത്താല്‍ ഉണ്ടാകുന്ന പദങ്ങള്‍ കൂട്ടിച്ചേര്‍ത്തു സ്ഥിരവ്യത്യാസശ്രേണി (അൃശവോലശേര ലൃെശല) ഉണ്ടാക്കാം. അതുപോലെ ആദ്യപദത്തെ തുടര്‍ച്ചയായി ഗുണിച്ചാലുണ്ടാകുന്ന പദങ്ങള്‍ ക്രമത്തില്‍ കൂട്ടിയാല്‍ ജ്യാമിതീശ്രേണി (ഏലീാലൃശര ലൃെശല) ഉണ്ടാകുന്നു. സ്ഥിരവ്യത്യാസശ്രേണിയിലെ പദങ്ങളുടെ വ്യുത്ക്രമങ്ങള്‍ ചേര്‍ത്താല്‍ ഹാര്‍മോണികശ്രേണിയും (ഒമൃാീിശര ലൃെശല) ഉണ്ടാകുന്നു. 2 + 5 + 8 + 11 + ... ; 8 + 4 + 2 + 1 + + + ...; + ... എന്നിവ ഇവയ്ക്കു ക്രമത്തില്‍ ഉദാഹരണങ്ങളാണ്.
+
ഏതെങ്കിലുമൊരു പദത്തോട് ഒരു സ്ഥിരസംഖ്യ തുടര്‍ച്ചയായി ചേര്‍ത്താല്‍ ഉണ്ടാകുന്ന പദങ്ങള്‍ കൂട്ടിച്ചേര്‍ത്തു സ്ഥിരവ്യത്യാസശ്രേണി (Arithmetic series) ഉണ്ടാക്കാം. അതുപോലെ ആദ്യപദത്തെ തുടര്‍ച്ചയായി ഗുണിച്ചാലുണ്ടാകുന്ന പദങ്ങള്‍ ക്രമത്തില്‍ കൂട്ടിയാല്‍ ജ്യാമിതീശ്രേണി (Geometric series) ഉണ്ടാകുന്നു. സ്ഥിരവ്യത്യാസശ്രേണിയിലെ പദങ്ങളുടെ വ്യുത്ക്രമങ്ങള്‍ ചേര്‍ത്താല്‍ ഹാര്‍മോണികശ്രേണിയും (Harmonic series) ഉണ്ടാകുന്നു. 2 + 5 + 8 + 11 + ... ; 8 + 4 + 2 + 1 + + + ...; + ... എന്നിവ ഇവയ്ക്കു ക്രമത്തില്‍ ഉദാഹരണങ്ങളാണ്.
വരി 32: വരി 30:
-
പദങ്ങളുടെ എണ്ണം ക്ലുപ്തമാണെങ്കില്‍ ആ ശ്രേണിക്ക് ക്ലുപ്തശ്രേണി അഥവാ സാന്തശ്രേണി (ളശിശലേ ലൃെശല) എന്നുപറയുന്നു. സാന്തശ്രേണി ഗണിതശാസ്ത്രത്തില്‍ ഒരു പ്രശ്നമല്ല; അനന്തശ്രേണിയാണ് പ്രശ്നമാകാറുള്ളത്. നോ: അനാലിസിസ്, അങ്കനങ്ങള്‍, ഗണിത, ആള്‍ജിബ്ര, ശ്രേണികള്‍, ഗണിത-
+
പദങ്ങളുടെ എണ്ണം ക്ലുപ്തമാണെങ്കില്‍ ആ ശ്രേണിക്ക് ക്ലുപ്തശ്രേണി അഥവാ സാന്തശ്രേണി (finite series) എന്നുപറയുന്നു. സാന്തശ്രേണി ഗണിതശാസ്ത്രത്തില്‍ ഒരു പ്രശ്നമല്ല; അനന്തശ്രേണിയാണ് പ്രശ്നമാകാറുള്ളത്. നോ: അനാലിസിസ്, അങ്കനങ്ങള്‍, ഗണിത, ആള്‍ജിബ്ര, ശ്രേണികള്‍, ഗണിത-

13:06, 25 ഫെബ്രുവരി 2008-നു നിലവിലുണ്ടായിരുന്ന രൂപം

അനന്തശ്രേണി

Infinite series

ഗണിതശാസ്ത്രത്തില്‍, അനവസാനമായി തുടര്‍ന്നുപോകുന്ന അനുക്രമപദങ്ങള്‍ (ലൂൌെലിരല ീള ലൃാേ) + (അധികം), – (ന്യൂനം) എന്നീ ക്രിയാചിഹ്നങ്ങള്‍കൊണ്ട് ഘടിപ്പിച്ചാലുണ്ടാകുന്ന വാക്യം. 1, 2, 3...., ി, ... ഏറ്റവും ലളിതമായ അനുക്രമമാണിത്.

1 + 2 + 3 + ... + n + ...  =  ;


മുതലായവ അനന്തശ്രേണികളാണ്.

എന്നിവയുടെ ആകെത്തുകയും അനന്തമാണ്. എന്നാല്‍


എന്നിവയുടേത് അനന്തമല്ല. ആദ്യത്തെ തരത്തിന് അപകേന്ദ്രശ്രേണി (Divergent series) എന്നും രണ്ടാമത്തേതിന് അഭികേന്ദ്രശ്രേണി (Convergent series) എന്നും പറയുന്നു.

ഏതെങ്കിലുമൊരു പദത്തോട് ഒരു സ്ഥിരസംഖ്യ തുടര്‍ച്ചയായി ചേര്‍ത്താല്‍ ഉണ്ടാകുന്ന പദങ്ങള്‍ കൂട്ടിച്ചേര്‍ത്തു സ്ഥിരവ്യത്യാസശ്രേണി (Arithmetic series) ഉണ്ടാക്കാം. അതുപോലെ ആദ്യപദത്തെ തുടര്‍ച്ചയായി ഗുണിച്ചാലുണ്ടാകുന്ന പദങ്ങള്‍ ക്രമത്തില്‍ കൂട്ടിയാല്‍ ജ്യാമിതീശ്രേണി (Geometric series) ഉണ്ടാകുന്നു. സ്ഥിരവ്യത്യാസശ്രേണിയിലെ പദങ്ങളുടെ വ്യുത്ക്രമങ്ങള്‍ ചേര്‍ത്താല്‍ ഹാര്‍മോണികശ്രേണിയും (Harmonic series) ഉണ്ടാകുന്നു. 2 + 5 + 8 + 11 + ... ; 8 + 4 + 2 + 1 + + + ...; + ... എന്നിവ ഇവയ്ക്കു ക്രമത്തില്‍ ഉദാഹരണങ്ങളാണ്.


അഭികേന്ദ്രശ്രേണി, അപകേന്ദ്രശ്രേണി എന്നീ തരംതിരിവുകള്‍ ഗണിതശാസ്ത്രത്തിലെ അനാലിസിസ് എന്ന ശാഖയിലെ മുഖ്യ പ്രശ്നമാണ്. ഗണിതശാസ്ത്രത്തില്‍ നിത്യപ്രയോഗത്തിലുള്ള പല ശ്രേണികളും ഉണ്ട്.


  (ലൈബ്നിറ്റസ് ശ്രേണി);




പദങ്ങളുടെ എണ്ണം ക്ലുപ്തമാണെങ്കില്‍ ആ ശ്രേണിക്ക് ക്ലുപ്തശ്രേണി അഥവാ സാന്തശ്രേണി (finite series) എന്നുപറയുന്നു. സാന്തശ്രേണി ഗണിതശാസ്ത്രത്തില്‍ ഒരു പ്രശ്നമല്ല; അനന്തശ്രേണിയാണ് പ്രശ്നമാകാറുള്ളത്. നോ: അനാലിസിസ്, അങ്കനങ്ങള്‍, ഗണിത, ആള്‍ജിബ്ര, ശ്രേണികള്‍, ഗണിത-

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍