This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
അണുകേന്ദ്ര റിയാക്റ്റര്
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
(New page: = അണുകേന്ദ്ര റിയാക്റ്റര് = ചൌരഹലമൃ ൃലമരീൃ അണുവിഘടനത്തില്നിന്നുണ്ട...) |
|||
വരി 1: | വരി 1: | ||
= അണുകേന്ദ്ര റിയാക്റ്റര് = | = അണുകേന്ദ്ര റിയാക്റ്റര് = | ||
- | + | Nuclear reactor | |
അണുവിഘടനത്തില്നിന്നുണ്ടാകുന്ന ഊര്ജത്തെ നിയന്ത്രിതരീതിയില് പ്രായോഗികാവശ്യങ്ങള്ക്കായി വിനിയോഗിക്കാന് സജ്ജീകരിക്കുന്ന സംവിധാനം. വൈദ്യുതോത്പാദനമുള്പ്പെടെ നിരവധി ആവശ്യങ്ങള്ക്കായി അണുകേന്ദ്ര റിയാക്ടറുകള് ഉപയോഗിച്ചുവരുന്നു. | അണുവിഘടനത്തില്നിന്നുണ്ടാകുന്ന ഊര്ജത്തെ നിയന്ത്രിതരീതിയില് പ്രായോഗികാവശ്യങ്ങള്ക്കായി വിനിയോഗിക്കാന് സജ്ജീകരിക്കുന്ന സംവിധാനം. വൈദ്യുതോത്പാദനമുള്പ്പെടെ നിരവധി ആവശ്യങ്ങള്ക്കായി അണുകേന്ദ്ര റിയാക്ടറുകള് ഉപയോഗിച്ചുവരുന്നു. | ||
ലേഖന സംവിധാനം | ലേഖന സംവിധാനം | ||
- | + | 1 വിഘടനം | |
1. ശൃംഖലാ-അഭിക്രിയ | 1. ശൃംഖലാ-അഭിക്രിയ | ||
2. ചതുര്ഘടക-സമീകരണം | 2. ചതുര്ഘടക-സമീകരണം | ||
3. ക്രാന്തികാവസ്ഥ | 3. ക്രാന്തികാവസ്ഥ | ||
- | + | II വര്ഗീകരണം | |
1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില് | 1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില് | ||
- | + | 1. താപീയ റിയാക്റ്ററിന്റെ മാതൃക | |
- | + | a. ക്രോഡം | |
- | + | b. നിയന്ത്രണവ്യവസ്ഥ | |
- | + | c. ശീതകം | |
- | + | d. താപവിനിമേയി | |
- | + | e രക്ഷാകവചങ്ങള് | |
2. ലക്ഷ്യത്തിന്റെ അടിസ്ഥാനത്തില് | 2. ലക്ഷ്യത്തിന്റെ അടിസ്ഥാനത്തില് | ||
- | + | i. ഗവേഷണ റിയാക്റ്റര് | |
- | + | ii പവര് റിയാക്റ്റര് | |
- | + | a. മര്ദിതജല റിയാക്റ്റര് | |
- | + | b. തിളജല റിയാക്റ്റര് | |
- | + | c വാതക ശീതളന റിയാക്റ്റര് | |
- | + | d ഘനജല റിയാക്റ്റര് | |
- | + | e. സോഡിയം ഗ്രാഫൈറ്റ് റിയാക്റ്റര് | |
- | + | f ദ്രുത പ്രത്യുത്പാദന റിയാക്റ്റര് | |
- | + | III. റിയാക്റ്ററുകളുടെ സുരക്ഷിതത്വം | |
- | + | IV ഭാവിയിലെ റിയാക്റ്റര് | |
- | + | 1. വിഘടനം (Fission). 1939-ല് ഹാന്, സ്ട്രാസ്മാന് എന്നിവര്ക്കു ലഭിച്ച പരീക്ഷണഫലങ്ങളെ, ന്യൂട്രോണ് വിഘടനംകൊണ്ട് യുറേനിയം അണുകേന്ദ്രത്തിന് സംഭവിക്കുന്ന വിഘടനം ആയിട്ടാണ് മിറ്റ്നര്, ഫ്രിഷ് എന്നിവര് ചിത്രീകരിച്ചത്. പ്രകൃതിയിലുള്ള യുറേനിയത്തിന്റെ 0.712 ശ.മാ. 235u എന്ന ഐസോടോപ്പും ബാക്കി (234u-ന്റെ അവഗണിക്കത്തക്ക അംശം ഒഴിച്ചാല്) 238u എന്ന ഐസോടോപ്പുമാണ്. 0.025 ev ഊര്ജമുള്ള ന്യൂട്രോണുകളെ താപീയ (thermal) ന്യൂട്രോണുകളെന്ന് വിളിക്കുന്നു. | |
- | + | 1 ev മുതല് 0.1 ev വരെ ഊര്ജമുള്ളവ മാധ്യമിക (intermediate) ന്യൂട്രോണുകളെന്നും അതിനുമേല് ഊര്ജമുള്ളവ ദ്രുത (fast) ന്യൂട്രോണുകളെന്നും അറിയപ്പെടുന്നു. താപീയ ന്യൂട്രോണുകള് 235u-ലും ദ്രുതന്യൂട്രോണുകള് 238u-ലും വിഘടനം നടത്തുന്നു. വിഘടനത്തിന്റെ പഠനത്തില് ഇവ രണ്ടുമാണ് പ്രധാനം. | |
- | വിഘടനത്തില് ഒരു അണുകേന്ദ്രം രണ്ടു ഖണ്ഡങ്ങളായി പിളരുകയും രണ്ടോ മൂന്നോ ന്യൂട്രോണുകളെ മോചിപ്പിക്കുകയും ചെയ്യുന്നു. 95-നും 140-നും അടുത്തു ദ്രവ്യമാനസംഖ്യ ( | + | വിഘടനത്തില് ഒരു അണുകേന്ദ്രം രണ്ടു ഖണ്ഡങ്ങളായി പിളരുകയും രണ്ടോ മൂന്നോ ന്യൂട്രോണുകളെ മോചിപ്പിക്കുകയും ചെയ്യുന്നു. 95-നും 140-നും അടുത്തു ദ്രവ്യമാനസംഖ്യ (mass number) ഉള്ള അണുകേന്ദ്രങ്ങളായിട്ടാണ് യുറേനിയം പിളരുന്നത്. ഉദാ. 235u-ന്റെ ഒരു വിഘടനമാതൃക: |
+ | |||
+ | 235u + 1no - 95 Mo42 + 139La57+ 2'no +7B | ||
- | ഈ സംഭവത്തില് ആദ്യം ഉണ്ടായത് മോളിബ്ഡനവും ( | + | ഈ സംഭവത്തില് ആദ്യം ഉണ്ടായത് മോളിബ്ഡനവും (Mo) അണുസംഖ്യ 50 ആയിട്ടുള്ളൊരു ന്യൂക്ളിയസ്സുമായിരുന്നു. ബീറ്റാകണികകള് (B) ആ അണുകേന്ദ്രത്തിന്റെ ജീര്ണനം (decay) മൂലമാണ് ഉദ്ഭവിക്കുന്നത്. വിഘടനത്തില്നിന്നുണ്ടാകുന്ന ന്യൂട്രോണുകള് ദ്രുതങ്ങളാണ്. |
- | വിഘടനത്തില് അത്യധികമായ ഊര്ജം ഉത്പാദിപ്പിക്കപ്പെടുന്ന സവിശേഷത ആണ് അതിന്റെ പ്രായോഗികത വര്ധിപ്പിച്ചത്. വിഘടനത്തില് അല്പം ദ്രവ്യമാനം അപ്രത്യക്ഷമാകുന്നത് ഐന്സ്റ്റൈന്റെ ദ്രവ്യ-ഊര്ജ സമീകരണപ്രകാരം, ഊര്ജമായി പ്രത്യക്ഷപ്പെടുന്നു. മുകളില് കൊടുത്തിട്ടുള്ള അഭിക്രിയയില് 0.219 ദ്രവ്യമാനമാത്രകള് ( | + | വിഘടനത്തില് അത്യധികമായ ഊര്ജം ഉത്പാദിപ്പിക്കപ്പെടുന്ന സവിശേഷത ആണ് അതിന്റെ പ്രായോഗികത വര്ധിപ്പിച്ചത്. വിഘടനത്തില് അല്പം ദ്രവ്യമാനം അപ്രത്യക്ഷമാകുന്നത് ഐന്സ്റ്റൈന്റെ ദ്രവ്യ-ഊര്ജ സമീകരണപ്രകാരം, ഊര്ജമായി പ്രത്യക്ഷപ്പെടുന്നു. മുകളില് കൊടുത്തിട്ടുള്ള അഭിക്രിയയില് 0.219 ദ്രവ്യമാനമാത്രകള് (atomic mass units അഥവാ a m u) ഊര്ജമായി രൂപാന്തരപ്പെടുന്നു. ഒരു a m u, 931 mev-ന് തുല്യമായതിനാല് 204 Mev ഊര്ജം ഉത്പാദിപ്പിക്കപ്പെടുന്നു എന്നു മനസ്സിലാക്കാം. അതായത് ഒരു വിഘടനത്തിന് ശ.ശ. 200 Mev ഊര്ജം മോചിപ്പിക്കപ്പെടുന്നു. |
- | വിഘടന ഊര്ജത്തിന്റെ സിംഹഭാഗവും (170 | + | വിഘടന ഊര്ജത്തിന്റെ സിംഹഭാഗവും (170 `Mev) വിഘടനാംശങ്ങളുടെ ഗതികോര്ജമായി പരിവര്ത്തനം ചെയ്യപ്പെടുന്നു. വിഘടനാംശങ്ങളെ ചുറ്റുമുള്ള മറ്റു അണുകേന്ദ്രങ്ങളുമായി ഇലാസ്തിക സംഘട്ടനം (elastic collision) നടത്തി ഈ ഊര്ജത്തെ താപ-ഊര്ജരൂപത്തിലേക്കു മാറ്റാം. |
- | 1. ശൃംഖലാ - അഭിക്രിയ ( | + | 1. ശൃംഖലാ - അഭിക്രിയ (Chain reaction). വിഘടന ന്യൂട്രോണുകളെ ഗ്രാഫൈറ്റ്, ഘനജലം (heavy water) തുടങ്ങിയ ഏതെങ്കിലുമൊരു യോജിച്ച മാധ്യമത്തിലൂടെ കടത്തിവിട്ടാല് അവ മാധ്യമത്തിന്റെ അണുകേന്ദ്രങ്ങളുമായി ഇലാസ്തിക സംഘട്ടനത്തിലകപ്പെട്ട് ശക്തി ക്ഷയിച്ച് താപീയ സ്തരത്തെ (thermal level) പ്രാപിക്കുന്നു. ഈ പ്രക്രിയയെ മന്ദീകരണം (moderation) എന്നും പ്രസ്തുത മാധ്യമത്തെ മന്ദീകാരി (moderator) എന്നും വിളിക്കുന്നു. മന്ദീകൃത ന്യൂട്രോണുകള്ക്ക് 235u-ല് തുടര്ന്നു വിഘടനം നടത്തി ഒരു വിഘടനശൃംഖല തന്നെ സൃഷ്ടിക്കാന് കഴിയും. ഒരു വാട്ട് (ണമ) ശക്തി ഉത്പാദിപ്പിക്കണമെങ്കില് സെക്കന്ഡില് 30 ബില്യന് വിഘടനങ്ങള് നടക്കണം. |
- | മന്ദീകരണത്തിനിടയില് ഏതാനും ന്യൂട്രോണുകള് നഷ്ടപ്പെടാനിടയുണ്ട്. | + | മന്ദീകരണത്തിനിടയില് ഏതാനും ന്യൂട്രോണുകള് നഷ്ടപ്പെടാനിടയുണ്ട്. 238u-ലെ അനുനാദഗ്രസനം (resonance capture), അപദ്രവ്യങ്ങളുടെ അവശോഷണം, സ്വാഭാവികമായ ചോര്ച്ച എന്നിങ്ങനെ വിവിധതരത്തില് ന്യൂട്രോണുകള് നഷ്ടപ്പെടുന്നു. ഒരു വിഘടന ന്യൂട്രോണ് മന്ദീകരിക്കപ്പെട്ട് ഏതെങ്കിലുമൊരു 235u അണുകേന്ദ്രത്തില് അവശോഷിതമാകുന്നതുവരെയുള്ള കാലത്തിന് ഒരു തലമുറ (generation) എന്നു പറയുന്നു. ശൃംഖലാ-അഭിക്രിയ തുടരുന്നതിന് വിഘടനക്ഷമത ഉള്ള ഒരു ന്യൂട്രോണെങ്കിലും ഓരോ തലമുറയിലും ആവശ്യമാണ്. |
- | 2. ചതുര്ഘടക സമീകരണം ( | + | 2. ചതുര്ഘടക സമീകരണം (Four Factor Formula). അനന്തപരിമാണമുള്ളൊരു റിയാക്റ്റര്വ്യൂഹത്തില്നിന്നും ന്യൂട്രോണ് ചോര്ച്ച ഉണ്ടാവില്ല. തൊട്ടുതൊട്ടുള്ള രണ്ടു തലമുറകളിലെ വിഘടനന്യൂട്രോണുകളുടെ സംഖ്യകള് തമ്മിലുള്ള അംശബന്ധത്തെ പ്രഭാവിഗുണനാങ്കം (effective multiplication factor.k) എന്നു പറയുന്നു. അനന്തപരിമാണമുള്ളൊരു വ്യൂഹത്തിന്റെ കാര്യത്തില് പ്രസ്തുത അംശബന്ധത്തെ അനന്തപരിമാണ-മാധ്യമ (infinite medium) ഗുണനാങ്കം , എന്നു വിളിക്കുന്നു. ഈ രണ്ട് അംശബന്ധങ്ങളെ k =k..p എന്ന സമീകരണംകൊണ്ടു ബന്ധിക്കാം. ചോര്ച്ചയില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യതയെ (probability) ആണ് p സൂചിപ്പിക്കുന്നത്. |
- | ഒരു തലമുറയുടെ ആരംഭത്തില് | + | ഒരു തലമുറയുടെ ആരംഭത്തില് N ദ്രുതന്യൂട്രോണുകള് ഉണ്ടെന്ന് സങ്കല്പിക്കുക. അവയില് ചിലത് 238u-അണുകേന്ദ്രങ്ങളെ ഭേദിച്ച് ന്യൂട്രോണ് പെരുപ്പത്തില് വ്യത്യാസം വരുത്താനിടയുണ്ട്. ഈ പ്രഭാവത്തെ കണക്കിലെടുക്കുന്നതിന് N-നെ E എന്നൊരു ഘടകം - ദ്രുതവിഘടന ഘടകം (fast fission factor)-കൊണ്ടു ഗുണിക്കുക. ഇന്ധനമന്ദീകാരി മാധ്യമത്തിലൂടെ പ്രയാണം ചെയ്യുമ്പോള് ഈ NE ന്യൂട്രോണുകളുടെ ശക്തി ക്ഷയിക്കുന്നു. അവയില് കുറെ എണ്ണം 238u അനുനാദഗ്രസനത്തിന് (resonance) ഇരയാകും. അതില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യത p ആണെങ്കില്, മന്ദീകരണാന്ത്യത്തില് അവശേഷിക്കുന്ന ന്യൂട്രോണുകളുടെ സംഖ്യ NEp ആകുന്നു. ഇവയുടെ f എന്ന അംശം 235u-ല് 845അവശോഷിക്കപ്പെടുന്നു എന്നു വയ്ക്കുക. f-ന് താപീയ വിനിയോഗഘടകം (thermal utilization factor) എന്നു പറയുന്നു. അവശോഷിക്കപ്പെടുന്ന ഓരോ താപീയ-ന്യൂട്രോണിനും പകരം ദ്രുതഗതിയുള്ള n വിഘടന ന്യൂട്രോണുകള് പിറക്കുന്നു. തന്മൂലം രണ്ടാം തലമുറക്കാരുടെ സംഖ്യ NEpfn ആകുന്നു. നിര്വചനമനുസരിച്ച്: . k.. = Epn. |
- | 3. ക്രാന്തികാവസ്ഥ ( | + | 3. ക്രാന്തികാവസ്ഥ (Criticality). മുമ്പു പ്രസ്താവിച്ചതനുസരിച്ച് സ്വയം പരിരക്ഷിതമായൊരു ശൃംഖലാപ്രവര്ത്തനത്തിന് k ഒന്നോ അതിലധികമോ ആയിരിക്കണം; k = 1 എന്ന അവസ്ഥയ്ക്ക് ക്രാന്തികാവസ്ഥ എന്നു പറയുന്നു. k > 1, k < 1 എന്നീ അവസ്ഥകളെ യഥാക്രമം അതിക്രാന്തിക(supercritical)മെന്നും, അധഃക്രാന്തിക(subcritical)മെന്നും വിശേഷിപ്പിക്കുന്നു. ക്രാന്തികാവസ്ഥ കൈവരുത്തണമെങ്കില് യുടെ മൂല്യം 1-ല് കൂടുതലായിരിക്കണം. ചോര്ച്ചയില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യത p, എപ്പോഴും 1-ല് കുറവായിരിക്കുമെന്നതാണിതിനു കാരണം. k.. യുടെ മൂല്യം ഉയര്ത്തുന്നതിന് p, f എന്നിവയുടെ മൂല്യങ്ങള് വര്ധിപ്പിക്കണം. യുറേനിയത്തിന്റെ അളവിനെ അപേക്ഷിച്ച് മന്ദീകാരിയുടെ പരിമാണം വര്ധിപ്പിക്കുകയാണെങ്കില് p-യുടെ മൂല്യം വര്ധിക്കും. പക്ഷേ, അപ്പോള് f-ന്റെ മൂല്യം കുറയും; നേരെ മറിച്ചാണെങ്കില്, p-മൂല്യം കുറയുകയും f-മൂല്യം വര്ധിക്കുകയും ചെയ്യും. പ്രായോഗികമായി pf-ന് ഉച്ചതമമൂല്യം പ്രദാനം ചെയ്യത്തക്ക നിലയിലാണ് ഇന്ധനവും മന്ദീകാരിയും ചേര്ക്കാറുള്ളത്. പ്രകൃതിജന്യമായ യുറേനിയത്തില് 235u-ന്റെ അംശത്തെ കൃത്രിമമായി വര്ധിപ്പിക്കുന്നതിന് സംപോഷണം (enrichment) എന്നു പറയുന്നു. ഒരു നിശ്ചിത അളവിലുള്ള മന്ദീകാരിയോടൊപ്പം പ്രകൃത്യാ കിട്ടുന്ന യുറേനിയത്തിനുപകരം സമ്പുഷ്ട യുറേനിയം ഉപയോഗിക്കുകയാണെങ്കില്, p-യുടെയും f-ന്റെയും മൂല്യങ്ങളെ ഒരേ സമയത്തുതന്നെ വര്ധിപ്പിക്കാവുന്നതാണ്. |
- | ക്രാന്തികാവസ്ഥ സൃഷ്ടിക്കുവാന് വ്യൂഹത്തിന് (ഇന്ധനം + മന്ദീകാരി) ഉണ്ടായിരിക്കേണ്ട ഏറ്റവും കുറഞ്ഞ വലുപ്പത്തെ ക്രാന്തികമാനം ( | + | ക്രാന്തികാവസ്ഥ സൃഷ്ടിക്കുവാന് വ്യൂഹത്തിന് (ഇന്ധനം + മന്ദീകാരി) ഉണ്ടായിരിക്കേണ്ട ഏറ്റവും കുറഞ്ഞ വലുപ്പത്തെ ക്രാന്തികമാനം (critical size) എന്നു പറയുന്നു. ഒരു റിയാക്റ്ററിന്റെ നിര്മിതി ആരംഭിക്കുന്നതിനു മുമ്പുതന്നെ അതിന്റെ ക്രാന്തികമാനത്തെ ഗണനക്രിയകൊണ്ടും പിന്നീട് പരീക്ഷണങ്ങളില്ക്കൂടിയും നിര്ണയിക്കുന്നു. |
- | + | ii വര്ഗീകരണം | |
1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില്. താപീയം, ദ്രുതം, മാധ്യമികം എന്നിങ്ങനെ മൂന്നിനം റിയാക്റ്ററുകള് ഉണ്ട്. വിഘടനകാരികളായ ന്യൂട്രോണുകളില് ഭൂരിപക്ഷത്തിന്റെയും ഊര്ജത്തെ അടിസ്ഥാനപ്പെടുത്തിയാണ് ഈ വിഭജനം. | 1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില്. താപീയം, ദ്രുതം, മാധ്യമികം എന്നിങ്ങനെ മൂന്നിനം റിയാക്റ്ററുകള് ഉണ്ട്. വിഘടനകാരികളായ ന്യൂട്രോണുകളില് ഭൂരിപക്ഷത്തിന്റെയും ഊര്ജത്തെ അടിസ്ഥാനപ്പെടുത്തിയാണ് ഈ വിഭജനം. | ||
വരി 63: | വരി 65: | ||
മാധ്യമിക റിയാക്റ്ററില് വിഘടനം നടത്തുന്നത് മാധ്യമിക ന്യൂട്രോണുകളാണ്. അല്പം മന്ദീകരണമാവശ്യമുണ്ട്. പക്ഷേ, താപീയ റിയാക്റ്ററിന്റെ അത്രയും വേണ്ട. | മാധ്യമിക റിയാക്റ്ററില് വിഘടനം നടത്തുന്നത് മാധ്യമിക ന്യൂട്രോണുകളാണ്. അല്പം മന്ദീകരണമാവശ്യമുണ്ട്. പക്ഷേ, താപീയ റിയാക്റ്ററിന്റെ അത്രയും വേണ്ട. | ||
- | + | 1. താപീയ റിയാക്റ്ററിന്റെ മാതൃക. ആദ്യത്തെ റിയാക്റ്റര് നിര്മിച്ചതും പ്രവര്ത്തിപ്പിച്ചതും അമേരിക്കയിലെ എന്റിക്കോ ഫെര്മി എന്ന ശാസ്ത്രജ്ഞന്റെ നേതൃത്വത്തിലുള്ള ഒരു സംഘമാണ്. 1942 ഡി. 2-ന് ഉച്ചതിരിഞ്ഞ് 3.25നാണ് ശൃംഖലാ-അഭിക്രിയ ആദ്യമായി സാധിച്ചത്. യുറേനിയം, ഗ്രാഫൈറ്റ് എന്നിവയുടെ 'ഇഷ്ടിക'കളെ ജാലികാ (lattice) രീതിയില് വിന്യസിച്ചിട്ടുള്ളൊരു വ്യൂഹമായിരുന്നു ഫെര്മിയുടെ റിയാക്റ്റര്. അതിനെ തുടര്ന്ന് വിവിധ രാജ്യങ്ങളിലായി നൂറുകണക്കില് റിയാക്റ്ററുകള് സ്ഥാപിക്കപ്പെട്ടു. അവയില് 99 ശ.മാനമോ അതിലധികമോ താപീയ വിഘടനത്തെ (thermal fission) അടിസ്ഥാനപ്പെടുത്തി ആയതിനാല് ഒരു താപീയ റിയാക്റ്ററിന്റെ മുഖ്യഭാഗങ്ങള് വിശദമാക്കേണ്ടതുണ്ട്. | |
- | + | മa ക്രോഡം (Core). ഇന്ധനവും മന്ദീകാരിയും ചേര്ത്തു വിന്യസിക്കപ്പെട്ടിട്ടുള്ള കേന്ദ്രഭാഗം. 235u-നെ കൂടാതെ 233u, 239pu (പ്ളൂട്ടോണിയം) എന്നീ വസ്തുക്കളിലും താപീയ വസ്തുക്കളിലും താപീയ ന്യൂട്രോണുകള്ക്ക് വിഘടനം നടത്താന് കഴിയും. ന്യൂട്രോണ് അഭിക്രിയ മൂലം തോറിയത്തില്നിന്ന് 233u-ഉം, 238u-ല് നിന്ന് 239pu-ഉം ഉത്പാദിപ്പിക്കപ്പെടുന്നു. | |
- | ഇന്ധനത്തില് വിഘടനക്ഷമമായ ഐസോടോപ്പ് കൂടാതെ (ഉദാ. | + | ഇന്ധനത്തില് വിഘടനക്ഷമമായ ഐസോടോപ്പ് കൂടാതെ (ഉദാ. 235u) വിഘടനക്ഷമമാക്കി മാറ്റാവുന്ന മറ്റു മൂലകങ്ങളും (ഉദാ. 238u) കലര്ത്തിയിരിക്കും. ഇത്തരം പരിവര്ത്തനത്തിന് ഉപയോഗിക്കുന്ന വസ്തുക്കളെ ഫലപുഷ്ടവസ്തുക്കളെന്ന് (fertile materials) പറയുന്നു. വിഘടനയോഗ്യമായ ഇന്ധനം ഉത്പാദിപ്പിക്കുന്ന രണ്ടിനം റിയാക്റ്ററുകളുണ്ട്. ഒരു 'പരിവര്ത്തക'ത്തില് (convertor) ഒരു വിഘടന-ഇനത്തെ (fissile species) ഇന്ധനമായി സ്വീകരിക്കയും (ഉദാ. 235u) ന്യൂട്രോണ് അവശോഷണം മൂലം ഒരു ഫലപുഷ്ടവസ്തുവില്നിന്നും (ഉദാ. 238u) മറ്റൊരു വിഘടന-ഇനത്തെ (ഉദാ. 239pu) ഉത്പാദിപ്പിക്കുകയും ചെയ്യുന്നു. ഒരു വിഘടന-ഇനത്തെ (ഉദാ. 239pu) ഇന്ധനമായി ഉപയോഗിക്കുമ്പോള് ഉണ്ടാകുന്ന ന്യൂട്രോണുകളെ ഒരു ഫലപുഷ്ടവസ്തു (ഉദാ. 288u) അവശോഷിച്ച് അതേ വിഘടന ഇനത്തെ തന്നെ കൂടുതലായി ഉത്പാദിപ്പിക്കുകയും ചെയ്യുന്ന റിയാക്റ്ററുകള്ക്ക് 'ബ്രീഡറു'കളെന്നു (Breeders) പറയുന്നു. |
- | ക്രോഡത്തിന്റെ വലുപ്പം ഇന്ധനത്തിന്റെ സമ്പുഷ്ടതയെ ആശ്രയിച്ചിരിക്കുന്നു. സമ്പുഷ്ടത വര്ധിപ്പിക്കുന്നതനുസരിച്ച് ക്രോഡം ചെറുതാകുന്നു. ഖരരൂപത്തിലോ അപൂര്വമായി ഒരു ജലപരലായിനി ( | + | ക്രോഡത്തിന്റെ വലുപ്പം ഇന്ധനത്തിന്റെ സമ്പുഷ്ടതയെ ആശ്രയിച്ചിരിക്കുന്നു. സമ്പുഷ്ടത വര്ധിപ്പിക്കുന്നതനുസരിച്ച് ക്രോഡം ചെറുതാകുന്നു. ഖരരൂപത്തിലോ അപൂര്വമായി ഒരു ജലപരലായിനി (aqueous) ആയിട്ടോ ഇന്ധനം പ്രയോഗിക്കപ്പെടുന്നു. പ്ളേറ്റുകള്, പെല്ലറ്റുകള് (pellets), സൂചികള് തുടങ്ങിയ രൂപങ്ങള് ഇന്ധനനിര്മിതിയില് (fuel fabrication) സ്വീകരിക്കപ്പെട്ടിരിക്കുന്നു. ശീതകവുമായി (coolant) നേരിട്ടു യാതൊരു സമ്പര്ക്കവും ഉണ്ടാകാതിരിക്കത്തക്കവണ്ണം ഇന്ധനശകലങ്ങള്ക്ക് ഒരു രക്ഷാകവചം (cladding) നല്കുന്നു. |
- | ഹൈഡ്രജന്, ഡ്യൂട്ടീരിയം, കാര്ബണ്, ബെറിലിയം തുടങ്ങിയ ഭാരംകുറഞ്ഞ ന്യൂക്ളിയസ്സുകളുമായി ന്യൂട്രോണുകള്ക്ക് ഇലാസ്തികസംഘട്ടനം നടത്തുന്നതിന് മെച്ചപ്പെട്ട പരിച്ഛേദമാണുള്ളത് ( | + | ഹൈഡ്രജന്, ഡ്യൂട്ടീരിയം, കാര്ബണ്, ബെറിലിയം തുടങ്ങിയ ഭാരംകുറഞ്ഞ ന്യൂക്ളിയസ്സുകളുമായി ന്യൂട്രോണുകള്ക്ക് ഇലാസ്തികസംഘട്ടനം നടത്തുന്നതിന് മെച്ചപ്പെട്ട പരിച്ഛേദമാണുള്ളത് (cross-section). പ്രകീര്ണന-പരിച്ഛേദം (scattering cross - sectioin) അധികമാണെന്നതുകൊണ്ടുമാത്രം ഒരു വസ്തുവിനെ മന്ദീകാരിയായി ഉപയോഗിക്കാന് പാടില്ല. അതിന്റെ ന്യൂട്രോണ്ഗ്രസനപരിച്ഛേദവും (capture -cross-section) വളരെ കുറവായിരിക്കണം. ലഘുജലം (light water), ഘനജലം (heavy water), ഗ്രാഫൈറ്റ്, ബെറിലിയം തുടങ്ങിയവയാണ് സാധാരണ പ്രയോഗത്തിലുള്ള മന്ദീകാരികള്. ഇന്ധനത്തെയും മന്ദീകാരിയേയും ഏകാത്മകമോ ഭിന്നാത്മകമോ ആയി ചേര്ത്തു വിന്യസിക്കുന്നു. ദ്രുതന്യൂട്രോണുകളെ അടിസ്ഥാനപ്പെടുത്തിയുള്ള ദ്രുതറിയാക്റ്ററുകളില് മന്ദീകാരി ആവശ്യമില്ല. |
- | + | b/////****** നിയന്ത്രണവ്യവസ്ഥ (Control system). വിഘടനത്തില് ക്ഷണിജങ്ങളെന്നും (prompt) വിളംബിതങ്ങളെന്നും (delayed) രണ്ടു പറ്റം ന്യൂട്രോണുകളാണ് പിറക്കുന്നത്. ക്ഷണിജ ന്യൂട്രോണുകള് 1014 സെ.നുള്ളിലും വിളംബിത ന്യൂട്രോണുകള് ഏതാനും സെ. താമസിച്ചും ഉദ്ഗമിക്കപ്പെടുന്നു. വിളംബിത ന്യൂട്രോണുകളുടെ ഉദ്ഭവത്തിനുള്ള ഈ കാലതാമസം റിയാക്റ്ററിന്റെ നിയന്ത്രണ വ്യവസ്ഥയുടെ അടിസ്ഥാനമായിത്തീര്ന്നിരിക്കുന്നു. എല്ലാ ന്യൂട്രോണുകളും ഭേദനനിമിഷത്തില് തന്നെ പുറപ്പെട്ടിരുന്നെങ്കില് ഭീമമായൊരു വിസ്ഫോടനത്തില് എല്ലാ കഴിയുമായിരുന്നു. ബോറോണ്, കാഡ്മിയം തുടങ്ങിയ ന്യൂട്രോണ് ഗ്രസനകാരികളെ (മയീൃയലൃ) ദണ്ഡുകളുടെ രൂപത്തില് റിയാക്റ്ററിലേക്ക് ഇറക്കിയും ചലിപ്പിച്ചും പിന്തള്ളിയുമാണ് അതിന്റെ പ്രവര്ത്തനം നിയന്ത്രിക്കുന്നത്. | |
ര. ശീതകം (ഇീീഹമി). ക്രോഡത്തില് ഉണ്ടാകുന്ന ചൂട് അവിടെനിന്നും എത്രയും വേഗത്തില് നീക്കം ചെയ്യുന്നോ അത്രയും ശക്തി വര്ധിപ്പിക്കാന് അതു സഹായിക്കും. താപാന്തരണത്തിനായി (വലമ ൃമിളെലൃ) ഒരു ദ്രാവകമോ വാതകമോ പരിസഞ്ചരണം (രശൃരൌഹമശീിേ) ചെയ്യപ്പെടുന്നു. ഇതിന് ശീതകമെന്നു പറയുന്നു. ഉദാ. സാധാരണജലം, ഘനജലം, ദ്രവസോഡിയം, വായു, കാര്ബണ്ഡൈഓക്സൈഡ്. | ര. ശീതകം (ഇീീഹമി). ക്രോഡത്തില് ഉണ്ടാകുന്ന ചൂട് അവിടെനിന്നും എത്രയും വേഗത്തില് നീക്കം ചെയ്യുന്നോ അത്രയും ശക്തി വര്ധിപ്പിക്കാന് അതു സഹായിക്കും. താപാന്തരണത്തിനായി (വലമ ൃമിളെലൃ) ഒരു ദ്രാവകമോ വാതകമോ പരിസഞ്ചരണം (രശൃരൌഹമശീിേ) ചെയ്യപ്പെടുന്നു. ഇതിന് ശീതകമെന്നു പറയുന്നു. ഉദാ. സാധാരണജലം, ഘനജലം, ദ്രവസോഡിയം, വായു, കാര്ബണ്ഡൈഓക്സൈഡ്. |
13:55, 18 ഫെബ്രുവരി 2008-നു നിലവിലുണ്ടായിരുന്ന രൂപം
അണുകേന്ദ്ര റിയാക്റ്റര്
Nuclear reactor
അണുവിഘടനത്തില്നിന്നുണ്ടാകുന്ന ഊര്ജത്തെ നിയന്ത്രിതരീതിയില് പ്രായോഗികാവശ്യങ്ങള്ക്കായി വിനിയോഗിക്കാന് സജ്ജീകരിക്കുന്ന സംവിധാനം. വൈദ്യുതോത്പാദനമുള്പ്പെടെ നിരവധി ആവശ്യങ്ങള്ക്കായി അണുകേന്ദ്ര റിയാക്ടറുകള് ഉപയോഗിച്ചുവരുന്നു. ലേഖന സംവിധാനം 1 വിഘടനം 1. ശൃംഖലാ-അഭിക്രിയ 2. ചതുര്ഘടക-സമീകരണം 3. ക്രാന്തികാവസ്ഥ II വര്ഗീകരണം 1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില് 1. താപീയ റിയാക്റ്ററിന്റെ മാതൃക a. ക്രോഡം b. നിയന്ത്രണവ്യവസ്ഥ c. ശീതകം d. താപവിനിമേയി e രക്ഷാകവചങ്ങള് 2. ലക്ഷ്യത്തിന്റെ അടിസ്ഥാനത്തില് i. ഗവേഷണ റിയാക്റ്റര് ii പവര് റിയാക്റ്റര് a. മര്ദിതജല റിയാക്റ്റര് b. തിളജല റിയാക്റ്റര് c വാതക ശീതളന റിയാക്റ്റര് d ഘനജല റിയാക്റ്റര് e. സോഡിയം ഗ്രാഫൈറ്റ് റിയാക്റ്റര് f ദ്രുത പ്രത്യുത്പാദന റിയാക്റ്റര് III. റിയാക്റ്ററുകളുടെ സുരക്ഷിതത്വം IV ഭാവിയിലെ റിയാക്റ്റര്
1. വിഘടനം (Fission). 1939-ല് ഹാന്, സ്ട്രാസ്മാന് എന്നിവര്ക്കു ലഭിച്ച പരീക്ഷണഫലങ്ങളെ, ന്യൂട്രോണ് വിഘടനംകൊണ്ട് യുറേനിയം അണുകേന്ദ്രത്തിന് സംഭവിക്കുന്ന വിഘടനം ആയിട്ടാണ് മിറ്റ്നര്, ഫ്രിഷ് എന്നിവര് ചിത്രീകരിച്ചത്. പ്രകൃതിയിലുള്ള യുറേനിയത്തിന്റെ 0.712 ശ.മാ. 235u എന്ന ഐസോടോപ്പും ബാക്കി (234u-ന്റെ അവഗണിക്കത്തക്ക അംശം ഒഴിച്ചാല്) 238u എന്ന ഐസോടോപ്പുമാണ്. 0.025 ev ഊര്ജമുള്ള ന്യൂട്രോണുകളെ താപീയ (thermal) ന്യൂട്രോണുകളെന്ന് വിളിക്കുന്നു.
1 ev മുതല് 0.1 ev വരെ ഊര്ജമുള്ളവ മാധ്യമിക (intermediate) ന്യൂട്രോണുകളെന്നും അതിനുമേല് ഊര്ജമുള്ളവ ദ്രുത (fast) ന്യൂട്രോണുകളെന്നും അറിയപ്പെടുന്നു. താപീയ ന്യൂട്രോണുകള് 235u-ലും ദ്രുതന്യൂട്രോണുകള് 238u-ലും വിഘടനം നടത്തുന്നു. വിഘടനത്തിന്റെ പഠനത്തില് ഇവ രണ്ടുമാണ് പ്രധാനം.
വിഘടനത്തില് ഒരു അണുകേന്ദ്രം രണ്ടു ഖണ്ഡങ്ങളായി പിളരുകയും രണ്ടോ മൂന്നോ ന്യൂട്രോണുകളെ മോചിപ്പിക്കുകയും ചെയ്യുന്നു. 95-നും 140-നും അടുത്തു ദ്രവ്യമാനസംഖ്യ (mass number) ഉള്ള അണുകേന്ദ്രങ്ങളായിട്ടാണ് യുറേനിയം പിളരുന്നത്. ഉദാ. 235u-ന്റെ ഒരു വിഘടനമാതൃക:
235u + 1no - 95 Mo42 + 139La57+ 2'no +7B
ഈ സംഭവത്തില് ആദ്യം ഉണ്ടായത് മോളിബ്ഡനവും (Mo) അണുസംഖ്യ 50 ആയിട്ടുള്ളൊരു ന്യൂക്ളിയസ്സുമായിരുന്നു. ബീറ്റാകണികകള് (B) ആ അണുകേന്ദ്രത്തിന്റെ ജീര്ണനം (decay) മൂലമാണ് ഉദ്ഭവിക്കുന്നത്. വിഘടനത്തില്നിന്നുണ്ടാകുന്ന ന്യൂട്രോണുകള് ദ്രുതങ്ങളാണ്.
വിഘടനത്തില് അത്യധികമായ ഊര്ജം ഉത്പാദിപ്പിക്കപ്പെടുന്ന സവിശേഷത ആണ് അതിന്റെ പ്രായോഗികത വര്ധിപ്പിച്ചത്. വിഘടനത്തില് അല്പം ദ്രവ്യമാനം അപ്രത്യക്ഷമാകുന്നത് ഐന്സ്റ്റൈന്റെ ദ്രവ്യ-ഊര്ജ സമീകരണപ്രകാരം, ഊര്ജമായി പ്രത്യക്ഷപ്പെടുന്നു. മുകളില് കൊടുത്തിട്ടുള്ള അഭിക്രിയയില് 0.219 ദ്രവ്യമാനമാത്രകള് (atomic mass units അഥവാ a m u) ഊര്ജമായി രൂപാന്തരപ്പെടുന്നു. ഒരു a m u, 931 mev-ന് തുല്യമായതിനാല് 204 Mev ഊര്ജം ഉത്പാദിപ്പിക്കപ്പെടുന്നു എന്നു മനസ്സിലാക്കാം. അതായത് ഒരു വിഘടനത്തിന് ശ.ശ. 200 Mev ഊര്ജം മോചിപ്പിക്കപ്പെടുന്നു.
വിഘടന ഊര്ജത്തിന്റെ സിംഹഭാഗവും (170 `Mev) വിഘടനാംശങ്ങളുടെ ഗതികോര്ജമായി പരിവര്ത്തനം ചെയ്യപ്പെടുന്നു. വിഘടനാംശങ്ങളെ ചുറ്റുമുള്ള മറ്റു അണുകേന്ദ്രങ്ങളുമായി ഇലാസ്തിക സംഘട്ടനം (elastic collision) നടത്തി ഈ ഊര്ജത്തെ താപ-ഊര്ജരൂപത്തിലേക്കു മാറ്റാം.
1. ശൃംഖലാ - അഭിക്രിയ (Chain reaction). വിഘടന ന്യൂട്രോണുകളെ ഗ്രാഫൈറ്റ്, ഘനജലം (heavy water) തുടങ്ങിയ ഏതെങ്കിലുമൊരു യോജിച്ച മാധ്യമത്തിലൂടെ കടത്തിവിട്ടാല് അവ മാധ്യമത്തിന്റെ അണുകേന്ദ്രങ്ങളുമായി ഇലാസ്തിക സംഘട്ടനത്തിലകപ്പെട്ട് ശക്തി ക്ഷയിച്ച് താപീയ സ്തരത്തെ (thermal level) പ്രാപിക്കുന്നു. ഈ പ്രക്രിയയെ മന്ദീകരണം (moderation) എന്നും പ്രസ്തുത മാധ്യമത്തെ മന്ദീകാരി (moderator) എന്നും വിളിക്കുന്നു. മന്ദീകൃത ന്യൂട്രോണുകള്ക്ക് 235u-ല് തുടര്ന്നു വിഘടനം നടത്തി ഒരു വിഘടനശൃംഖല തന്നെ സൃഷ്ടിക്കാന് കഴിയും. ഒരു വാട്ട് (ണമ) ശക്തി ഉത്പാദിപ്പിക്കണമെങ്കില് സെക്കന്ഡില് 30 ബില്യന് വിഘടനങ്ങള് നടക്കണം.
മന്ദീകരണത്തിനിടയില് ഏതാനും ന്യൂട്രോണുകള് നഷ്ടപ്പെടാനിടയുണ്ട്. 238u-ലെ അനുനാദഗ്രസനം (resonance capture), അപദ്രവ്യങ്ങളുടെ അവശോഷണം, സ്വാഭാവികമായ ചോര്ച്ച എന്നിങ്ങനെ വിവിധതരത്തില് ന്യൂട്രോണുകള് നഷ്ടപ്പെടുന്നു. ഒരു വിഘടന ന്യൂട്രോണ് മന്ദീകരിക്കപ്പെട്ട് ഏതെങ്കിലുമൊരു 235u അണുകേന്ദ്രത്തില് അവശോഷിതമാകുന്നതുവരെയുള്ള കാലത്തിന് ഒരു തലമുറ (generation) എന്നു പറയുന്നു. ശൃംഖലാ-അഭിക്രിയ തുടരുന്നതിന് വിഘടനക്ഷമത ഉള്ള ഒരു ന്യൂട്രോണെങ്കിലും ഓരോ തലമുറയിലും ആവശ്യമാണ്.
2. ചതുര്ഘടക സമീകരണം (Four Factor Formula). അനന്തപരിമാണമുള്ളൊരു റിയാക്റ്റര്വ്യൂഹത്തില്നിന്നും ന്യൂട്രോണ് ചോര്ച്ച ഉണ്ടാവില്ല. തൊട്ടുതൊട്ടുള്ള രണ്ടു തലമുറകളിലെ വിഘടനന്യൂട്രോണുകളുടെ സംഖ്യകള് തമ്മിലുള്ള അംശബന്ധത്തെ പ്രഭാവിഗുണനാങ്കം (effective multiplication factor.k) എന്നു പറയുന്നു. അനന്തപരിമാണമുള്ളൊരു വ്യൂഹത്തിന്റെ കാര്യത്തില് പ്രസ്തുത അംശബന്ധത്തെ അനന്തപരിമാണ-മാധ്യമ (infinite medium) ഗുണനാങ്കം , എന്നു വിളിക്കുന്നു. ഈ രണ്ട് അംശബന്ധങ്ങളെ k =k..p എന്ന സമീകരണംകൊണ്ടു ബന്ധിക്കാം. ചോര്ച്ചയില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യതയെ (probability) ആണ് p സൂചിപ്പിക്കുന്നത്.
ഒരു തലമുറയുടെ ആരംഭത്തില് N ദ്രുതന്യൂട്രോണുകള് ഉണ്ടെന്ന് സങ്കല്പിക്കുക. അവയില് ചിലത് 238u-അണുകേന്ദ്രങ്ങളെ ഭേദിച്ച് ന്യൂട്രോണ് പെരുപ്പത്തില് വ്യത്യാസം വരുത്താനിടയുണ്ട്. ഈ പ്രഭാവത്തെ കണക്കിലെടുക്കുന്നതിന് N-നെ E എന്നൊരു ഘടകം - ദ്രുതവിഘടന ഘടകം (fast fission factor)-കൊണ്ടു ഗുണിക്കുക. ഇന്ധനമന്ദീകാരി മാധ്യമത്തിലൂടെ പ്രയാണം ചെയ്യുമ്പോള് ഈ NE ന്യൂട്രോണുകളുടെ ശക്തി ക്ഷയിക്കുന്നു. അവയില് കുറെ എണ്ണം 238u അനുനാദഗ്രസനത്തിന് (resonance) ഇരയാകും. അതില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യത p ആണെങ്കില്, മന്ദീകരണാന്ത്യത്തില് അവശേഷിക്കുന്ന ന്യൂട്രോണുകളുടെ സംഖ്യ NEp ആകുന്നു. ഇവയുടെ f എന്ന അംശം 235u-ല് 845അവശോഷിക്കപ്പെടുന്നു എന്നു വയ്ക്കുക. f-ന് താപീയ വിനിയോഗഘടകം (thermal utilization factor) എന്നു പറയുന്നു. അവശോഷിക്കപ്പെടുന്ന ഓരോ താപീയ-ന്യൂട്രോണിനും പകരം ദ്രുതഗതിയുള്ള n വിഘടന ന്യൂട്രോണുകള് പിറക്കുന്നു. തന്മൂലം രണ്ടാം തലമുറക്കാരുടെ സംഖ്യ NEpfn ആകുന്നു. നിര്വചനമനുസരിച്ച്: . k.. = Epn.
3. ക്രാന്തികാവസ്ഥ (Criticality). മുമ്പു പ്രസ്താവിച്ചതനുസരിച്ച് സ്വയം പരിരക്ഷിതമായൊരു ശൃംഖലാപ്രവര്ത്തനത്തിന് k ഒന്നോ അതിലധികമോ ആയിരിക്കണം; k = 1 എന്ന അവസ്ഥയ്ക്ക് ക്രാന്തികാവസ്ഥ എന്നു പറയുന്നു. k > 1, k < 1 എന്നീ അവസ്ഥകളെ യഥാക്രമം അതിക്രാന്തിക(supercritical)മെന്നും, അധഃക്രാന്തിക(subcritical)മെന്നും വിശേഷിപ്പിക്കുന്നു. ക്രാന്തികാവസ്ഥ കൈവരുത്തണമെങ്കില് യുടെ മൂല്യം 1-ല് കൂടുതലായിരിക്കണം. ചോര്ച്ചയില്നിന്നു രക്ഷപ്പെടാനുള്ള സംഭാവ്യത p, എപ്പോഴും 1-ല് കുറവായിരിക്കുമെന്നതാണിതിനു കാരണം. k.. യുടെ മൂല്യം ഉയര്ത്തുന്നതിന് p, f എന്നിവയുടെ മൂല്യങ്ങള് വര്ധിപ്പിക്കണം. യുറേനിയത്തിന്റെ അളവിനെ അപേക്ഷിച്ച് മന്ദീകാരിയുടെ പരിമാണം വര്ധിപ്പിക്കുകയാണെങ്കില് p-യുടെ മൂല്യം വര്ധിക്കും. പക്ഷേ, അപ്പോള് f-ന്റെ മൂല്യം കുറയും; നേരെ മറിച്ചാണെങ്കില്, p-മൂല്യം കുറയുകയും f-മൂല്യം വര്ധിക്കുകയും ചെയ്യും. പ്രായോഗികമായി pf-ന് ഉച്ചതമമൂല്യം പ്രദാനം ചെയ്യത്തക്ക നിലയിലാണ് ഇന്ധനവും മന്ദീകാരിയും ചേര്ക്കാറുള്ളത്. പ്രകൃതിജന്യമായ യുറേനിയത്തില് 235u-ന്റെ അംശത്തെ കൃത്രിമമായി വര്ധിപ്പിക്കുന്നതിന് സംപോഷണം (enrichment) എന്നു പറയുന്നു. ഒരു നിശ്ചിത അളവിലുള്ള മന്ദീകാരിയോടൊപ്പം പ്രകൃത്യാ കിട്ടുന്ന യുറേനിയത്തിനുപകരം സമ്പുഷ്ട യുറേനിയം ഉപയോഗിക്കുകയാണെങ്കില്, p-യുടെയും f-ന്റെയും മൂല്യങ്ങളെ ഒരേ സമയത്തുതന്നെ വര്ധിപ്പിക്കാവുന്നതാണ്.
ക്രാന്തികാവസ്ഥ സൃഷ്ടിക്കുവാന് വ്യൂഹത്തിന് (ഇന്ധനം + മന്ദീകാരി) ഉണ്ടായിരിക്കേണ്ട ഏറ്റവും കുറഞ്ഞ വലുപ്പത്തെ ക്രാന്തികമാനം (critical size) എന്നു പറയുന്നു. ഒരു റിയാക്റ്ററിന്റെ നിര്മിതി ആരംഭിക്കുന്നതിനു മുമ്പുതന്നെ അതിന്റെ ക്രാന്തികമാനത്തെ ഗണനക്രിയകൊണ്ടും പിന്നീട് പരീക്ഷണങ്ങളില്ക്കൂടിയും നിര്ണയിക്കുന്നു.
ii വര്ഗീകരണം
1. ന്യൂട്രോണുകളുടെ അടിസ്ഥാനത്തില്. താപീയം, ദ്രുതം, മാധ്യമികം എന്നിങ്ങനെ മൂന്നിനം റിയാക്റ്ററുകള് ഉണ്ട്. വിഘടനകാരികളായ ന്യൂട്രോണുകളില് ഭൂരിപക്ഷത്തിന്റെയും ഊര്ജത്തെ അടിസ്ഥാനപ്പെടുത്തിയാണ് ഈ വിഭജനം.
താപീയ റിയാക്ടറില് വിഘടനം നടത്തുന്നത് താപീയ ന്യൂട്രോണുകളാണ്. ഇതിനു മന്ദീകാരി ആവശ്യമാണ്.
മന്ദീകാരി ഇല്ലാത്തതിനാല് വളരെ ഒതുക്കമുള്ള ചെറിയൊരു ക്രോഡമാണ് ദ്രുത-റിയാക്റ്ററിന്റേത്. ഇതില് അതിസമ്പുഷ്ട യുറേനിയം ഉപയോഗിക്കുന്നു. ക്രാന്തികത്വ പ്രാപ്തിക്ക് ഒരടി വ്യാസം മതിയാകും.
മാധ്യമിക റിയാക്റ്ററില് വിഘടനം നടത്തുന്നത് മാധ്യമിക ന്യൂട്രോണുകളാണ്. അല്പം മന്ദീകരണമാവശ്യമുണ്ട്. പക്ഷേ, താപീയ റിയാക്റ്ററിന്റെ അത്രയും വേണ്ട.
1. താപീയ റിയാക്റ്ററിന്റെ മാതൃക. ആദ്യത്തെ റിയാക്റ്റര് നിര്മിച്ചതും പ്രവര്ത്തിപ്പിച്ചതും അമേരിക്കയിലെ എന്റിക്കോ ഫെര്മി എന്ന ശാസ്ത്രജ്ഞന്റെ നേതൃത്വത്തിലുള്ള ഒരു സംഘമാണ്. 1942 ഡി. 2-ന് ഉച്ചതിരിഞ്ഞ് 3.25നാണ് ശൃംഖലാ-അഭിക്രിയ ആദ്യമായി സാധിച്ചത്. യുറേനിയം, ഗ്രാഫൈറ്റ് എന്നിവയുടെ 'ഇഷ്ടിക'കളെ ജാലികാ (lattice) രീതിയില് വിന്യസിച്ചിട്ടുള്ളൊരു വ്യൂഹമായിരുന്നു ഫെര്മിയുടെ റിയാക്റ്റര്. അതിനെ തുടര്ന്ന് വിവിധ രാജ്യങ്ങളിലായി നൂറുകണക്കില് റിയാക്റ്ററുകള് സ്ഥാപിക്കപ്പെട്ടു. അവയില് 99 ശ.മാനമോ അതിലധികമോ താപീയ വിഘടനത്തെ (thermal fission) അടിസ്ഥാനപ്പെടുത്തി ആയതിനാല് ഒരു താപീയ റിയാക്റ്ററിന്റെ മുഖ്യഭാഗങ്ങള് വിശദമാക്കേണ്ടതുണ്ട്.
മa ക്രോഡം (Core). ഇന്ധനവും മന്ദീകാരിയും ചേര്ത്തു വിന്യസിക്കപ്പെട്ടിട്ടുള്ള കേന്ദ്രഭാഗം. 235u-നെ കൂടാതെ 233u, 239pu (പ്ളൂട്ടോണിയം) എന്നീ വസ്തുക്കളിലും താപീയ വസ്തുക്കളിലും താപീയ ന്യൂട്രോണുകള്ക്ക് വിഘടനം നടത്താന് കഴിയും. ന്യൂട്രോണ് അഭിക്രിയ മൂലം തോറിയത്തില്നിന്ന് 233u-ഉം, 238u-ല് നിന്ന് 239pu-ഉം ഉത്പാദിപ്പിക്കപ്പെടുന്നു.
ഇന്ധനത്തില് വിഘടനക്ഷമമായ ഐസോടോപ്പ് കൂടാതെ (ഉദാ. 235u) വിഘടനക്ഷമമാക്കി മാറ്റാവുന്ന മറ്റു മൂലകങ്ങളും (ഉദാ. 238u) കലര്ത്തിയിരിക്കും. ഇത്തരം പരിവര്ത്തനത്തിന് ഉപയോഗിക്കുന്ന വസ്തുക്കളെ ഫലപുഷ്ടവസ്തുക്കളെന്ന് (fertile materials) പറയുന്നു. വിഘടനയോഗ്യമായ ഇന്ധനം ഉത്പാദിപ്പിക്കുന്ന രണ്ടിനം റിയാക്റ്ററുകളുണ്ട്. ഒരു 'പരിവര്ത്തക'ത്തില് (convertor) ഒരു വിഘടന-ഇനത്തെ (fissile species) ഇന്ധനമായി സ്വീകരിക്കയും (ഉദാ. 235u) ന്യൂട്രോണ് അവശോഷണം മൂലം ഒരു ഫലപുഷ്ടവസ്തുവില്നിന്നും (ഉദാ. 238u) മറ്റൊരു വിഘടന-ഇനത്തെ (ഉദാ. 239pu) ഉത്പാദിപ്പിക്കുകയും ചെയ്യുന്നു. ഒരു വിഘടന-ഇനത്തെ (ഉദാ. 239pu) ഇന്ധനമായി ഉപയോഗിക്കുമ്പോള് ഉണ്ടാകുന്ന ന്യൂട്രോണുകളെ ഒരു ഫലപുഷ്ടവസ്തു (ഉദാ. 288u) അവശോഷിച്ച് അതേ വിഘടന ഇനത്തെ തന്നെ കൂടുതലായി ഉത്പാദിപ്പിക്കുകയും ചെയ്യുന്ന റിയാക്റ്ററുകള്ക്ക് 'ബ്രീഡറു'കളെന്നു (Breeders) പറയുന്നു.
ക്രോഡത്തിന്റെ വലുപ്പം ഇന്ധനത്തിന്റെ സമ്പുഷ്ടതയെ ആശ്രയിച്ചിരിക്കുന്നു. സമ്പുഷ്ടത വര്ധിപ്പിക്കുന്നതനുസരിച്ച് ക്രോഡം ചെറുതാകുന്നു. ഖരരൂപത്തിലോ അപൂര്വമായി ഒരു ജലപരലായിനി (aqueous) ആയിട്ടോ ഇന്ധനം പ്രയോഗിക്കപ്പെടുന്നു. പ്ളേറ്റുകള്, പെല്ലറ്റുകള് (pellets), സൂചികള് തുടങ്ങിയ രൂപങ്ങള് ഇന്ധനനിര്മിതിയില് (fuel fabrication) സ്വീകരിക്കപ്പെട്ടിരിക്കുന്നു. ശീതകവുമായി (coolant) നേരിട്ടു യാതൊരു സമ്പര്ക്കവും ഉണ്ടാകാതിരിക്കത്തക്കവണ്ണം ഇന്ധനശകലങ്ങള്ക്ക് ഒരു രക്ഷാകവചം (cladding) നല്കുന്നു.
ഹൈഡ്രജന്, ഡ്യൂട്ടീരിയം, കാര്ബണ്, ബെറിലിയം തുടങ്ങിയ ഭാരംകുറഞ്ഞ ന്യൂക്ളിയസ്സുകളുമായി ന്യൂട്രോണുകള്ക്ക് ഇലാസ്തികസംഘട്ടനം നടത്തുന്നതിന് മെച്ചപ്പെട്ട പരിച്ഛേദമാണുള്ളത് (cross-section). പ്രകീര്ണന-പരിച്ഛേദം (scattering cross - sectioin) അധികമാണെന്നതുകൊണ്ടുമാത്രം ഒരു വസ്തുവിനെ മന്ദീകാരിയായി ഉപയോഗിക്കാന് പാടില്ല. അതിന്റെ ന്യൂട്രോണ്ഗ്രസനപരിച്ഛേദവും (capture -cross-section) വളരെ കുറവായിരിക്കണം. ലഘുജലം (light water), ഘനജലം (heavy water), ഗ്രാഫൈറ്റ്, ബെറിലിയം തുടങ്ങിയവയാണ് സാധാരണ പ്രയോഗത്തിലുള്ള മന്ദീകാരികള്. ഇന്ധനത്തെയും മന്ദീകാരിയേയും ഏകാത്മകമോ ഭിന്നാത്മകമോ ആയി ചേര്ത്തു വിന്യസിക്കുന്നു. ദ്രുതന്യൂട്രോണുകളെ അടിസ്ഥാനപ്പെടുത്തിയുള്ള ദ്രുതറിയാക്റ്ററുകളില് മന്ദീകാരി ആവശ്യമില്ല.
b/////****** നിയന്ത്രണവ്യവസ്ഥ (Control system). വിഘടനത്തില് ക്ഷണിജങ്ങളെന്നും (prompt) വിളംബിതങ്ങളെന്നും (delayed) രണ്ടു പറ്റം ന്യൂട്രോണുകളാണ് പിറക്കുന്നത്. ക്ഷണിജ ന്യൂട്രോണുകള് 1014 സെ.നുള്ളിലും വിളംബിത ന്യൂട്രോണുകള് ഏതാനും സെ. താമസിച്ചും ഉദ്ഗമിക്കപ്പെടുന്നു. വിളംബിത ന്യൂട്രോണുകളുടെ ഉദ്ഭവത്തിനുള്ള ഈ കാലതാമസം റിയാക്റ്ററിന്റെ നിയന്ത്രണ വ്യവസ്ഥയുടെ അടിസ്ഥാനമായിത്തീര്ന്നിരിക്കുന്നു. എല്ലാ ന്യൂട്രോണുകളും ഭേദനനിമിഷത്തില് തന്നെ പുറപ്പെട്ടിരുന്നെങ്കില് ഭീമമായൊരു വിസ്ഫോടനത്തില് എല്ലാ കഴിയുമായിരുന്നു. ബോറോണ്, കാഡ്മിയം തുടങ്ങിയ ന്യൂട്രോണ് ഗ്രസനകാരികളെ (മയീൃയലൃ) ദണ്ഡുകളുടെ രൂപത്തില് റിയാക്റ്ററിലേക്ക് ഇറക്കിയും ചലിപ്പിച്ചും പിന്തള്ളിയുമാണ് അതിന്റെ പ്രവര്ത്തനം നിയന്ത്രിക്കുന്നത്.
ര. ശീതകം (ഇീീഹമി). ക്രോഡത്തില് ഉണ്ടാകുന്ന ചൂട് അവിടെനിന്നും എത്രയും വേഗത്തില് നീക്കം ചെയ്യുന്നോ അത്രയും ശക്തി വര്ധിപ്പിക്കാന് അതു സഹായിക്കും. താപാന്തരണത്തിനായി (വലമ ൃമിളെലൃ) ഒരു ദ്രാവകമോ വാതകമോ പരിസഞ്ചരണം (രശൃരൌഹമശീിേ) ചെയ്യപ്പെടുന്നു. ഇതിന് ശീതകമെന്നു പറയുന്നു. ഉദാ. സാധാരണജലം, ഘനജലം, ദ്രവസോഡിയം, വായു, കാര്ബണ്ഡൈഓക്സൈഡ്.
റ. താപവിനിമേയി (ഒലമ ലഃരവമിഴലൃ). ശീതകം സംവഹിച്ചുകൊണ്ടു വരുന്ന താപത്തെ, നേരിട്ടു സമ്പര്ക്കമില്ലാതെ ജലത്തില് പകര്ന്ന് നീരാവി ഉത്പാദിപ്പിക്കുന്നതിനുള്ള ഉപകരണം. റേഡിയോ ആക്റ്റിവ് പ്രദൂഷണം (രീിമോശിമശീിേ) തടയുന്നതിനാണ് നേരിട്ടുള്ള സമ്പര്ക്കം വിലക്കിയിട്ടുള്ളത്.
ല. രക്ഷാകവചങ്ങള് (ടവശലഹറശിഴ). അണുവിഘടനത്തില് ഉദ്ഭവിക്കുന്ന മാരകവികിരണങ്ങളെ തടയുന്നതിന് റിയാക്റ്ററിനെ രണ്ടുതരത്തിലുള്ള രക്ഷാകവചങ്ങള് അണിയിക്കുന്നു. താപീയകവചം (വേലൃാമഹ വെശലഹറ) എന്നറിയപ്പെടുന്നൊരു സ്റ്റീല്ലൈനിങ് തീവ്രമായ വികിരണതാഡനമേറ്റ് (ൃമറശമശീിേ യീായമൃറാലി) റിയാക്റ്റര് ഭിത്തികള് ദ്രവിച്ചുപോകാതിരിക്കാന് സഹായിക്കുന്നു; താപീയകവചം തുളച്ച് പുറത്തുവരുന്ന അതിതീവ്രവികിരണങ്ങളെ തടയാന്വേണ്ടി കോണ്ക്രീറ്റുകൊണ്ട് നല്ല കനത്തിലൊരു ആവരണം റിയാക്റ്ററിന് മൊത്തത്തില് നല്കിയിട്ടുണ്ട്. അതിന് ജീവരക്ഷാകവചം എന്നു പറയുന്നു. പ്രവര്ത്തകരുടെ ആരോഗ്യവും ജീവനും പരിരക്ഷിക്കാന് അത്യന്താപേക്ഷിതമാണ് രക്ഷാകവചങ്ങള്.
2. ലക്ഷ്യത്തിന്റെ അടിസ്ഥാനത്തില്
ശ. ഗവേഷണ റിയാക്റ്റര്. ഗവേഷണം, അധ്യാപനം, പദാര്ഥപരിശോധന (ാമലൃേശമഹ ലേശിെേഴ) തുടങ്ങിയ ലക്ഷ്യങ്ങള്ക്കായി സംവിധാനം ചെയ്യപ്പെടുന്ന മാതൃകകളെ പൊതുവില് ഗവേഷണ റിയാക്റ്ററുകളെന്നു വിളിക്കാം. നൂതനമായ റിയാക്റ്റര് മാതൃകകളെപ്പറ്റി ഗവേഷണം നടത്താനും ശാസ്ത്രീയ പരീക്ഷണങ്ങള്ക്കാവശ്യമായ ന്യൂട്രോണുകള്, ഗാമാ (?) രശ്മികള് തുടങ്ങിയവയെ ഉത്പാദിപ്പിക്കാനും ആണ് ഗവേഷണ റിയാക്റ്ററുകളെ വിനിയോഗിക്കുന്നത്.
ഗവേഷണ റിയാക്റ്ററുകള് രണ്ടു തരമുണ്ട്: പൂള് (ുീീഹ) മാതൃകയും ടാങ്ക് (മിേസ) മാതൃകയും. പൂള്മാതൃകയില് (ഉദാ. അപ്സര) ജലം നിറച്ച ഒരു കൃത്രിമക്കുളത്തില് യഥേഷ്ടം സ്ഥാനചലനം നടത്താവുന്ന വിധത്തില് ക്രോഡത്തെ മുക്കിയിട്ടിരിക്കുന്നു. അടച്ചുവച്ച ഒരു ടാങ്കിനുള്ളില് ക്രോഡത്തെ പ്രതിഷ്ഠിച്ചിരിക്കയാണ് ടാങ്ക് റിയാക്റ്ററുകളില് ചെയ്തിരിക്കുന്നത്. പൂള്മാതൃകയെ അപേക്ഷിച്ച് കൂടുതല് ശക്തമായ ന്യൂട്രോണ്ബീമുകളെ ഉത്പാദിപ്പിക്കാന് ടാങ്ക് മാതൃകയ്ക്കു കഴിയും.
ഗവേഷണ റിയാക്റ്ററില് ഉണ്ടാകുന്ന താപത്തെ ശീതക വ്യവസ്ഥവഴി നീക്കം ചെയ്യുന്നു. അതിനെ വിദ്യുച്ഛക്തിയാക്കി മാറ്റുന്നില്ല.
ശശ. പവര് റിയാക്റ്റര്. വിദ്യുച്ഛക്തി ഉത്പാദനമാണ് ഇതിന്റെ മുഖ്യലക്ഷ്യം നീരാവി ടര്ബൈനില് പ്രവേശിച്ച് അതിന് ഘൂര്ണനഗതി (ൃീമ്യൃേ ാീശീിേ) ഉണ്ടാക്കുന്നു. ടര്ബൈന് ഷാഫ്ട് ഉപയോഗിച്ച് ജനറേറ്ററില് വിദ്യുച്ഛക്തി ഉത്പാദിപ്പിക്കുന്നു. ടര്ബൈന് വിടുന്ന നീരാവിക്ക് കണ്ടന്സറി(രീിറലിലൃെ)ലുള്ള ശീതകധമനികളുമായി സമ്പര്ക്കമുണ്ടായി ജലമായിത്തീരുന്നു. ഈ ജലം അടുത്ത പ്രവര്ത്തനത്തിനുവേണ്ടി നീരാവി സംഭരണവ്യൂഹത്തിലേക്ക് പമ്പുചെയ്തയയ്ക്കുന്നു. നീരാവി തണുപ്പിക്കുന്നതിന് ഒരു പ്രാകൃതികജലസ്രോതസ്സിനെയാണ് സാധാരണ ആശ്രയിക്കാറ്. പ്രധാനപ്പെട്ട ചില പവര് റിയാക്റ്റര് രൂപങ്ങള്:
മ. മര്ദിതജല റിയാക്റ്റര് (ജൃലൌൃശ്വലറ ംമലൃേ ൃലമരീൃ). ഇന്ധനം-യുറേനിയംഓക്സൈഡ് (സ്റ്റൈയ്ന്ലസ് സ്റ്റീല് അല്ലെങ്കില് സിര്ക്കോണിയം സങ്കരംകൊണ്ട് ആവൃതവും അല്പം സമ്പുഷ്ടമാക്കപ്പെട്ടതും); മന്ദീകാരി-ജലം; ശീതകം-ജലം; ക്രോഡത്തിലെ മര്ദം: 13.79 കി.പാസ്കല്; ശീതകത്തിന്റെ നിര്ഗമ താപമാനം (ീൌഹേല ലാുേലൃമൌൃല): 260ബ്ബഇനുമേല്.
യ. തിളജല റിയാക്റ്റര് (ആീശഹശിഴ ംമലൃേ ൃലമരീൃ). ഇന്ധനം-യുറേനിയം ഓക്സൈഡ് (മുന്ചൊന്ന സ്വഭാവം); മന്ദീകാരി-തിളയ്ക്കുന്ന വെള്ളം; ശീതകം-തിളയ്ക്കുന്ന വെള്ളം; ക്രോഡത്തിലെ മര്ദം: 6.89 കി.പാസ്കല്; ശീതകത്തിന്റെ നിര്ഗമതാപമാനം: 260ബ്ബഇനുമേല്.
ര. വാതക ശീതളന റിയാക്റ്റര് (ഏമ രീീഹലറ ൃലമരീൃ). ഇന്ധനം-ഗ്രാഫൈറ്റ് ആവരണമുള്ള തോറിയം കാര്ബൈഡ് കലര്ത്തിയ അതിസമ്പുഷ്ട യുറേനിയം കാര്ബൈഡ്; മന്ദീകാരി-ഗ്രാഫൈറ്റ്; ശീതകം-ഹീലിയം; ക്രോഡത്തിലെ മര്ദം: 2.76 കി.പാസ്കല്; ശീതകത്തിന്റെ നിര്ഗമതാപമാനം: 760ബ്ബഇ.
ഏറെ താപാന്തരണ (വലമ ൃമിളെലൃ) ഗുണങ്ങളില്ലെങ്കിലും കുറഞ്ഞ മര്ദനിലകളില്ത്തന്നെ ഉയര്ന്ന താപമാനങ്ങള് കൈവരുത്താന് വാതകങ്ങള്ക്ക് സാധിക്കുന്നു.
റ. ഘനജല റിയാക്റ്റര് (ഒലമ്യ് ംമലൃേ ൃലമരീൃ). ഇന്ധനം-ഒരു സിര്ക്കോണിയം മിശ്രത്താല് ആവൃതമായ യുറേനിയം ലോഹം, അല്ലെങ്കില് ഓക്സൈഡ്; മന്ദീകാരി-ഘനജലം; ശീതകം-ഘനജലം; ക്രോഡത്തിലെ മര്ദം: 5.17 കി.പാസ്കല്; ശീതകത്തിന്റെ നിര്ഗമ-താപമാനം: 260ബ്ബഇ.
ഇന്ധനോപഭോഗം കുറവാണിതില്. പ്രകൃതിയിലുള്ളതോ അല്പം സമ്പുഷ്ടമാക്കപ്പെട്ടതോ ആയ യുറേനിയം ഉപയോഗിക്കാം.
ല. സോഡിയം-ഗ്രാഫൈറ്റ് റിയാക്റ്റര് (ടീറശൌാ ഴൃമുവശലേ ൃലമരീൃ). ഇന്ധനം-അല്പം സമ്പുഷ്ടമാക്കപ്പെട്ട യുറേനിയം സങ്കരം അല്ലെങ്കില് കാര്ബൈഡ് സ്റ്റെയ്ന്ലസ്സ്റ്റീല് ആവൃതം; മന്ദീകാരി-ഗ്രാഫൈറ്റ്; ശീതകം-ദ്രാവകസോഡിയം; ക്രോഡത്തിലെ മര്ദം-അല്പമാത്രം; ശീതകത്തിന്റെ നിര്ഗമതാപമാനം: 537.78ബ്ബഇ.
വളരെ ചെറിയ മര്ദത്തില് ഉച്ചതാപമാനങ്ങള് സൃഷ്ടിക്കാന് ഇതിന് കഴിയുന്നു. കട്ടികൂടിയ ഒരു പുറന്തോടിന്റെ ആവശ്യമില്ല. ശക്തമായ താപാന്തരണഗുണങ്ങളാണ് സോഡിയത്തിനുള്ളത്.
ള. ദ്രുത-പ്രത്യുത്പാദന റിയാക്റ്റര് (എമ യൃലലറലൃ ൃലമരീൃ). ഇന്ധനം-അതിസമ്പുഷ്ട യുറേനിയം സങ്കരം, സ്റ്റെയ്ന്ലസ് സ്റ്റീല് ആവൃതം; അല്ലെങ്കില് യുറേനിയം-പ്ളൂട്ടോണിയം ഓക്സൈഡുകളോ കാര്ബൈഡുകളോ; മന്ദീകാരി-ഇല്ല; ശീതകം-ദ്രാവകസോഡിയം; ക്രോഡത്തിലെ മര്ദം-നാമമാത്രം; ശീതകത്തിന്റെ നിര്ഗമ താപമാനം: 426.67ബ്ബഇ-648.89ബ്ബഇ.
ഇതു മറ്റുതരത്തില് നഷ്ടപ്പെട്ടേക്കാവുന്ന ന്യൂട്രോണുകളെ 238ഡ അവശോഷിച്ചു പ്ളൂട്ടോണിയമായി രൂപാന്തരപ്പെടുത്തുന്നു.
കകക. റിയാക്റ്ററുകളുടെ സുരക്ഷിതത്വം. ഡിസൈന് തത്ത്വങ്ങള് പാടേ വ്യത്യസ്തമായതിനാല് ഏതെങ്കിലും സാഹചര്യത്തില് ഒരു റിയാക്റ്റര് അണുബോംബിനെപ്പോലെ പൊട്ടിത്തെറിക്കുമെന്നു ഭയപ്പെടേണ്ടതില്ല. ഒരു വേള അതിന്റെ ക്രോഡം ഉരുകിപ്പോയേക്കാം; സ്വയം പ്രവര്ത്തിക്കുന്ന നിയന്ത്രണദണ്ഡുകള് ഇത്തരം അപകടങ്ങളെ ഒഴിവാക്കുന്നു.
ഇന്ധനശകലങ്ങള്ക്കു നല്കുന്ന ആവരണം (രഹമററശിഴ) റേഡിയോ ആക്റ്റിവത വെളിയില് വരുന്നതിനെതിരായുള്ള പ്രഥമ രക്ഷാമാര്ഗമാണ്. രണ്ടാമത്തെ മുന്കരുതലായി റിയാക്റ്ററിനെ വാതകപ്രവേശനമില്ലാത്തൊരു (ഴമ ശേഴവ) ആവരണത്തിനുള്ളില് (ലിരഹീൌൃല) സ്ഥാപിക്കുകയാണ് പതിവ്. ഉണ്ടാകാനിടയുള്ള എത്ര വലിയ മര്ദത്തെയും താങ്ങാന് പറ്റിയതാണ് ഈ 'പുറന്തോട്'.
ഒരു റിയാക്റ്റര് സ്ഥാപിക്കുന്നതിനുള്ള സ്ഥലം തിരഞ്ഞെടുക്കുമ്പോള് പല കാര്യങ്ങളും പരിഗണിക്കേണ്ടതുണ്ട്. ജനവാസകേന്ദ്രങ്ങളില്നിന്നുള്ള ദൂരം, കാലാവസ്ഥ, ഭൂമിയുടെ കിടപ്പ് തുടങ്ങിയ ഘടകങ്ങളെ സസൂക്ഷ്മം പരിശോധിച്ചേ മതിയാകൂ.
കഢ. ഭാവിയിലെ റിയാക്റ്റര്. ഭാരംകുറഞ്ഞ അണുക്കളുടെ സംയോജനത്തില് (ളൌശീിെ) നിന്ന് വമ്പിച്ച ഊര്ജം-താപീയ അണുകേന്ദ്രോര്ജം (വേലൃാീിൌരഹലമൃ ലിലൃഴ്യ) - ലഭ്യമാണെന്നു തെളിഞ്ഞിട്ടുണ്ട്. ഉദാ. ഹൈഡ്രജന് ബോംബ്. വിഘടനതത്ത്വത്തെ ആസ്പദമാക്കിയുള്ള റിയാക്റ്ററുകളേ ഇന്നുള്ളു. സംയോജന-അഭിക്രിയയെ നിയന്ത്രിക്കാനുള്ള ശ്രമം തുടര്ന്നുകൊണ്ടിരിക്കുന്നു. അതു വിജയിക്കുന്നപക്ഷം ഏറ്റവും ചെലവുകുറഞ്ഞ രീതിയില് ശക്തി ലഭ്യമായിത്തീരും. വിലകൂടിയ ഇന്ധനങ്ങളൊന്നും ആവശ്യമില്ലെന്നതാണ് സംയോജനത്തില് നിന്നുണ്ടാകുന്ന ഊര്ജത്തിന്റെ സവിശേഷത. നോ: അണു, അണുകേന്ദ്രവിജ്ഞാനീയം, അണുബോംബ്, അണുശക്തിതേജോവശിഷ്ടങ്ങള്, അണുഗവേഷണം ഇന്ത്യയില്, അപ്സര റിയാക്റ്റര്, സെര്ലീന റിയാക്റ്റര്, സൈറസ് റിയാക്റ്റര്
(ഡോ. കെ. ബാബു ജോസഫ്)