This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
ഇലക്ട്രിക് മോട്ടോർ
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
Mksol (സംവാദം | സംഭാവനകള്) (→Electric Motor) |
Mksol (സംവാദം | സംഭാവനകള്) (→Electric Motor) |
||
(ഇടക്കുള്ള 3 പതിപ്പുകളിലെ മാറ്റങ്ങള് ഇവിടെ കാണിക്കുന്നില്ല.) | |||
വരി 1: | വരി 1: | ||
- | == ഇലക്ട്രിക് | + | == ഇലക്ട്രിക് മോട്ടോര് == |
- | + | ||
== Electric Motor == | == Electric Motor == | ||
വൈദ്യുതോര്ജത്തെ യാന്ത്രികോര്ജമാക്കി മാറ്റുന്ന ഉപകരണസംവിധാനം. വൈദ്യുത ജനറേറ്ററുകളെ മോട്ടോറുകളായി പ്രവര്ത്തിപ്പിക്കാവുന്നതാണ്. അതുപോലെ തിരിച്ചുള്ള പ്രവര്ത്തനവും സാധ്യമാണ്. വൈദ്യുതസംവിധാനവും യാന്ത്രികസംവിധാനവും തമ്മില് ബന്ധിപ്പിക്കുകയും പരസ്പരം ഊര്ജം കൈമാറുകയും ചെയ്യുന്നതിനുള്ള അഞ്ചുതരം സജ്ജീകരണങ്ങള് നിലവിലുണ്ട്. | വൈദ്യുതോര്ജത്തെ യാന്ത്രികോര്ജമാക്കി മാറ്റുന്ന ഉപകരണസംവിധാനം. വൈദ്യുത ജനറേറ്ററുകളെ മോട്ടോറുകളായി പ്രവര്ത്തിപ്പിക്കാവുന്നതാണ്. അതുപോലെ തിരിച്ചുള്ള പ്രവര്ത്തനവും സാധ്യമാണ്. വൈദ്യുതസംവിധാനവും യാന്ത്രികസംവിധാനവും തമ്മില് ബന്ധിപ്പിക്കുകയും പരസ്പരം ഊര്ജം കൈമാറുകയും ചെയ്യുന്നതിനുള്ള അഞ്ചുതരം സജ്ജീകരണങ്ങള് നിലവിലുണ്ട്. | ||
+ | |||
വിദ്യുത്കാന്തികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന കാന്തികമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനം മൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇവിടെ പ്രവര്ത്തിക്കുന്നത്. | വിദ്യുത്കാന്തികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന കാന്തികമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനം മൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇവിടെ പ്രവര്ത്തിക്കുന്നത്. | ||
+ | |||
സ്ഥിരവൈദ്യുതികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന വൈദ്യുതമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനംമൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതിന്റെ അടിസ്ഥാനം. | സ്ഥിരവൈദ്യുതികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന വൈദ്യുതമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനംമൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതിന്റെ അടിസ്ഥാനം. | ||
+ | |||
കാന്തദ്രവഗതികം. വിദ്യുത്ചാലകങ്ങളായ ദ്രവങ്ങളും കാന്തമണ്ഡലവും തമ്മിലുള്ള പരസ്പരപ്രവര്ത്തനം കൊണ്ടുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതില് പ്രാവര്ത്തികമാവുക. | കാന്തദ്രവഗതികം. വിദ്യുത്ചാലകങ്ങളായ ദ്രവങ്ങളും കാന്തമണ്ഡലവും തമ്മിലുള്ള പരസ്പരപ്രവര്ത്തനം കൊണ്ടുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതില് പ്രാവര്ത്തികമാവുക. | ||
+ | |||
കാന്തികവിരൂപണം (magnetic distortion). അയസ്കാന്തപദാര്ഥങ്ങളില് ബാഹ്യമായ കാന്തമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന സൂക്ഷ്മമായ വലുപ്പവ്യത്യാസമാണ് ഇതിന് ആധാരം. | കാന്തികവിരൂപണം (magnetic distortion). അയസ്കാന്തപദാര്ഥങ്ങളില് ബാഹ്യമായ കാന്തമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന സൂക്ഷ്മമായ വലുപ്പവ്യത്യാസമാണ് ഇതിന് ആധാരം. | ||
+ | |||
മര്ദവൈദ്യുതികം. ചില ക്രിസ്റ്റലുകളില് (piezoelectric) വൈദ്യുതമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന വിരൂപണമാണ് ഇതിന് ആധാരമായിട്ടുള്ളത്. | മര്ദവൈദ്യുതികം. ചില ക്രിസ്റ്റലുകളില് (piezoelectric) വൈദ്യുതമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന വിരൂപണമാണ് ഇതിന് ആധാരമായിട്ടുള്ളത്. | ||
+ | |||
ഇവയില് ആദ്യത്തെ തത്ത്വം മാത്രമാണ് വന്തോതില് ഇന്ന് ഉപയോഗപ്പെടുത്തിവരുന്നത്. കുറഞ്ഞ ചെലവില് കൂടുതല് ഊര്ജം രൂപാന്തരപ്പെടുത്തുന്ന സംവിധാനം ഇതുതന്നെയാണ്. പമ്പുകള്ക്കും മറ്റും ആവശ്യമായ ആയിരക്കണക്കിന് കുതിരശക്തിയുള്ള മോട്ടോറുകളും നിയന്ത്രണസംവിധാന(control system)ങ്ങള്ക്കുവേണ്ടി പതിനായിരത്തിലൊരംശം മാത്രം കുതിരശക്തിയുള്ള യന്ത്രങ്ങളും വിദ്യുത്കാന്തികതത്ത്വം ഉപയോഗിച്ചു നിര്മിച്ചുവരുന്നു. | ഇവയില് ആദ്യത്തെ തത്ത്വം മാത്രമാണ് വന്തോതില് ഇന്ന് ഉപയോഗപ്പെടുത്തിവരുന്നത്. കുറഞ്ഞ ചെലവില് കൂടുതല് ഊര്ജം രൂപാന്തരപ്പെടുത്തുന്ന സംവിധാനം ഇതുതന്നെയാണ്. പമ്പുകള്ക്കും മറ്റും ആവശ്യമായ ആയിരക്കണക്കിന് കുതിരശക്തിയുള്ള മോട്ടോറുകളും നിയന്ത്രണസംവിധാന(control system)ങ്ങള്ക്കുവേണ്ടി പതിനായിരത്തിലൊരംശം മാത്രം കുതിരശക്തിയുള്ള യന്ത്രങ്ങളും വിദ്യുത്കാന്തികതത്ത്വം ഉപയോഗിച്ചു നിര്മിച്ചുവരുന്നു. | ||
- | |||
- | + | '''അടിസ്ഥാനതത്ത്വങ്ങളുടെ വികാസം.''' എല്ലാ വിദ്യുത്കാന്തികയന്ത്രങ്ങളുടെയും അടിസ്ഥാനതത്ത്വം, രണ്ടു കാന്തങ്ങളുടെ പരസ്പരം നേരെയാക്കാനുള്ള പ്രവണതയാണ്. യാന്ത്രികനില മാറുന്നതിനനുസരിച്ച് സംഭരിച്ചിരിക്കുന്ന കാന്തികോര്ജത്തില് മാറ്റം സംഭവിക്കുന്നു. ഇതാണ് യാന്ത്രികോര്ജവും വൈദ്യുതോര്ജവും പരസ്പരം മാറ്റാനുള്ള അടിസ്ഥാനപ്രേരണ. | |
- | + | വൈദ്യുതി ഒഴുകിക്കൊണ്ടിരിക്കുന്ന ഒരു കമ്പി, അതിനുചുറ്റും ഒരു കാന്തമണ്ഡലം സൃഷ്ടിക്കുമെന്ന ഡാനിഷ് ശാസ്ത്രജ്ഞനായ ഹാന്സ് ക്രിസ്റ്റ്യന് ഏര്സ്റ്റേഡി (Hans Christian Oersted, 1777-1851)ന്റെ യാദൃച്ഛിക കണ്ടുപിടിത്ത(1820)മാണ് മോട്ടോറുകളുടെ തത്ത്വത്തിനു തുടക്കമിട്ടത്. വൈദ്യുതി വഹിക്കുന്ന ഒരു കമ്പിക്കു സമീപത്തു വയ്ക്കുമ്പോള് കാന്തസൂചി ലംബദിശയില് വികര്ഷിക്കപ്പെടുന്നതായി എര്സ്റ്റെഡ് കണ്ടു. 1821-ല് ഇംഗ്ലണ്ടില് മൈക്കല് ഫാരഡെ (1791-1867) വൈദ്യുതബലങ്ങളെയും കാന്തികബലങ്ങളെയും തുടര്ച്ചയായ യാന്ത്രികചലനമാക്കി പരിവര്ത്തനം ചെയ്യാം എന്ന് തെളിയിച്ചു. 1823-ല് ഇംഗ്ലീഷുകാരനായ വില്യം സ്റ്റര്ജന് (1783-1850) ഒരു ഇരുമ്പുകാമ്പിനു ചുറ്റും 18 ചുറ്റ് കമ്പി ചുറ്റി ആമ്പിയറുടെ സോളിനോയ്ഡ് എന്ന ആശയം പ്രായോഗികമാക്കി. കുതിരലാടത്തിന്റെ ആകൃതിയിലുള്ള ഈ കാന്തത്തെ വാര്ണീഷുപുരട്ടി കമ്പികളില് നിന്നു വേര്തിരിച്ചു നിര്ത്തി. തന്ഭാരത്തെക്കാള് 20 മടങ്ങ് (ഏകദേശം 4 കിലോഗ്രാം) ഭാരം പൊക്കുവാന് ഇതിനു കഴിഞ്ഞു. ജോസഫ് ഹെന്റി എന്ന അമേരിക്കക്കാരന് (1797-1878) 1831-ല് കൂടുതല് ശക്തിയുള്ള ഒരു വിദ്യുത്കാന്തം നിര്മിച്ചു. 341 കിലോഗ്രാം ഉദ്വഹനശക്തിയുള്ളതായിരുന്നു ഹെന്റിയുടെ കാന്തം. കൂടുതല് ചുറ്റ് കമ്പിയിടുമ്പോള് കമ്പികള് തമ്മില് മുട്ടി വൈദ്യുതി നഷ്ടപ്പെടാതിരിക്കാന് കമ്പിക്കു രോധനം കൂട്ടുക എന്ന ആശയം ഇദ്ദേഹം ഉന്നയിച്ചു. അതേവര്ഷം തന്നെ ഇലക്ട്രിക് മോട്ടോറിനെപ്പറ്റി ഒരു പ്രബന്ധവും ഹെന്റി പ്രസിദ്ധീകരിക്കുകയുണ്ടായി. 1833-ല് യു.എസ്സിലെ തോമസ് ഡാവന്പോര്ട്ട് ഒരു ഇലക്ട്രിക് മോട്ടോര് നിര്മിച്ചു. 1835-ല് ജോസഫ് ഹെന്റിയുടെ സര്ട്ടിഫിക്കറ്റോടെ ഡാവന്പോര്ട്ട് മോട്ടോറിനു പേറ്റന്റ് സമ്പാദിച്ചെങ്കിലും അതു സാമ്പത്തികമായി വിജയിച്ചില്ല. പിന്നീട് 1873-ല് ബെല്ജിയന് എന്ജിനീയറായ സെനോബ് തിയൊഫൈല് ഗ്രാം (Zenobe Theophile Gramme) ആണ് വാണിജ്യാടിസ്ഥാനത്തിലുള്ള ആദ്യത്തെ ഇലക്ട്രിക് മോട്ടോര് നിര്മിച്ചത്. | |
- | + | 1860-ല്ത്തന്നെ ഇറ്റലിക്കാരനായ പസിനോട്ടി (Pacinotti) ചാലുകളോടുകൂടിയ ആര്മേച്ചറും വലയരൂപത്തിലുള്ള (ring type) ചുരുളുകളും ആവിഷ്കരിച്ചിരുന്നുവെങ്കിലും വാണിജ്യാടിസ്ഥാനത്തില് ഇത് പ്രയോഗിച്ചത് ഗ്രാം ആയിരുന്നു. ഇതിലൂടെ വൈദ്യുതയന്ത്രങ്ങള്ക്ക് വളരെ ഉയര്ന്ന ക്ഷമത കൈവരിക്കാമെന്നു വന്നു. ഇന്നുപയോഗിക്കുന്നതരം വീപ്പപോലുള്ള (drum type) ആര്മേച്ചറുകള് ഹെഫ്നര്-അല്ടെനെക്കിന്റെ സംഭാവനയായിരുന്നു (1871). ആര്മേച്ചറും ധ്രുവങ്ങളും ഉരുക്കുതകിടുകള് അടുക്കി നിര്മിക്കുന്ന രീതി (എഡിസന്-1880, ക്രേഗ്-1883); ചുരുള് ചുറ്റുന്നതിലെ നിലവാരവത്കരണം, സമീകരണ വളയങ്ങള് (equalised rings മോര്ഡി-1883); ഇടധ്രുവങ്ങളും കോമ്പന്സേഷന് ചുരുളുകളും (മേയ്ത്ര്, മെംഗസ്-1885) തുടങ്ങിയ പരിഷ്കാരങ്ങള് നേര്ധാരാ യന്ത്രനിര്മാണത്തില് ആവിഷ്കരിക്കപ്പെട്ടു. ആദ്യകാലത്ത് വലിയൊരു നേര്ധാരാ ജനറേറ്ററില് നിന്ന് ചെറിയ മോട്ടോറുകള്ക്ക് നേരിട്ടു വൈദ്യുതി നല്കുന്ന പതിവാണുണ്ടായിരുന്നത്. | |
- | വിവിധ ഇനങ്ങള്. എല്ലാ മോട്ടോറുകളെയും മുഖ്യമായി രണ്ടുവിഭാഗത്തില് പെടുത്താം. പ്രത്യാവര്ത്തിധാര ഉപയോഗിക്കുന്നവയും നേര്ധാര പ്രയോജനപ്പെടുത്തുന്നവയും. പ്രത്യാവര്ത്തിധാരാമോട്ടോറുകളില് മുഖ്യമായവ | + | 1885-ല് ഇറ്റാലിയന് ശാസ്ത്രജ്ഞനായ ഫെറാരിസ് ആണ് "തിരിയുന്ന കാന്തമണ്ഡലം' (rotating magnetic field) എന്ന ആശയം ഉന്നയിച്ചത്. പ്രത്യാവര്ത്തിധാരാ മോട്ടോറുകള്(A.C. motors)ക്ക്ഇതു വഴിതെളിച്ചു. ഇറ്റലിയില് ഫെറാരിസും 1886-ല് യു.എസ്സില് നിക്കൊളാ ടെസ്ലയും ദ്വിഫേസ് മോട്ടോറുകള് ആവിഷ്കരിച്ചു. 1889-ല് റഷ്യന് ശാസ്ത്രജ്ഞനായ ഡൊലിവോ ഡൊബ്രാേവോള്സ്കി (Dolivo Dobrovolsky) ത്രീഫേസ് പ്രേരണ മോട്ടോറുകള് വിജയപ്രദമായി നിര്മിച്ചു. ഇന്ന് ഉപയോഗത്തിലിരിക്കുന്ന മോട്ടോറുകളില് ഏറിയപങ്കും പ്രേരണമോട്ടോറുകളാണ്. |
+ | |||
+ | '''വിവിധ ഇനങ്ങള്.''' എല്ലാ മോട്ടോറുകളെയും മുഖ്യമായി രണ്ടുവിഭാഗത്തില് പെടുത്താം. പ്രത്യാവര്ത്തിധാര ഉപയോഗിക്കുന്നവയും നേര്ധാര പ്രയോജനപ്പെടുത്തുന്നവയും. പ്രത്യാവര്ത്തിധാരാമോട്ടോറുകളില് മുഖ്യമായവ പ്രേരണ മോട്ടോറുകളും സിങ്ക്രണമോട്ടോറുകളും ആണ്. ത്രീഫേസ് പരിപഥങ്ങളിലും ഏകഫേസ് പരിപഥങ്ങളിലും ഉപയോഗിക്കത്തക്കവിധം ചില്ലറ വ്യത്യാസങ്ങളോടെ ഇവ നിര്മിക്കപ്പെടുന്നു. കമ്യൂട്ടേറ്റര് ഉപയോഗിക്കുന്ന തരം മോട്ടോറുകളാണ് നേര്ധാരാ മോട്ടോറുകള്. പ്രത്യേകാവശ്യങ്ങള്ക്കായി പ്രത്യാവര്ത്തിധാരകൊണ്ട് പ്രവര്ത്തിക്കുന്ന ചില മോട്ടോറുകളും കമ്യൂട്ടേറ്ററുകളോടുകൂടി നിര്മിക്കാറുണ്ട്. ഷ്റാഗേ മോട്ടോര് ഇതിനൊരു ഉദാഹരണമാണ്. മുഖ്യവിഭാഗങ്ങളില്പ്പെടാത്ത ചില പ്രത്യേകതരം മോട്ടോറുകളുമുണ്ട്; ഇലക്ട്രിക് ക്ലോക്കുകള്, ടേപ്റെക്കാര്ഡറുകള് മുതലായവയില് ഉപയോഗിക്കുന്ന മോട്ടോറുകള് ഇത്തരത്തില്പ്പെട്ടവയാണ്. നേര്ധാരകൊണ്ടും പ്രത്യാവര്ത്തിധാരകൊണ്ടും പ്രവര്ത്തിക്കാന് കഴിവുള്ള മോട്ടോറും ഉണ്ട്, ഇവ "യൂണിവേഴ്സല് മോട്ടോര്' എന്ന പേരിലാണ് അറിയപ്പെടുന്നത്. | ||
[[ചിത്രം:Vol4p297_Electric motor full.jpg|thumb|ചിത്രം 1. പുറംചട്ട നീക്കിവച്ച വിദ്യുത് മോട്ടോര്]] | [[ചിത്രം:Vol4p297_Electric motor full.jpg|thumb|ചിത്രം 1. പുറംചട്ട നീക്കിവച്ച വിദ്യുത് മോട്ടോര്]] | ||
- | ഘടന. സിലിണ്ടര് ആകൃതിയില് ഒന്നിനുള്ളില് കറങ്ങിക്കൊണ്ടിരിക്കുന്ന മറ്റൊരു സിലിണ്ടര് എന്നപോലെയാണ് പൊതുവേ ഇലക്ട്രിക് മോട്ടോറുകളുടെ ഘടന. കറങ്ങാത്ത ഭാഗത്തെ സ്റ്റേറ്റര് എന്നും കറങ്ങുന്ന ഭാഗത്തെ റോട്ടര് എന്നും പൊതുവേ പറയാം. നേര്ധാരാ മോട്ടോറുകളില് റോട്ടറിനെ ആര്മേച്ചര് എന്നു വ്യവഹരിക്കുന്നു. കറങ്ങുന്ന ഭാഗങ്ങളെ താങ്ങുന്ന ഷാഫ്റ്റ്, അനായാസം കറങ്ങാനനുവദിക്കുന്ന ബെയ്റിങ്ങുകള്, യന്ത്രഭാഗങ്ങളെ തണുപ്പിക്കാന് കാറ്റോട്ടം ഉറപ്പുവരുത്തുന്ന ഫാനുകള്, വൈദ്യുതബന്ധം സ്ഥാപിക്കുവാനാവശ്യമായ ബ്രഷുകള് ഇവയും മോട്ടോറിന്റെ പൊതുഘടനയില്പ്പെടുന്നു. | + | '''ഘടന.''' സിലിണ്ടര് ആകൃതിയില് ഒന്നിനുള്ളില് കറങ്ങിക്കൊണ്ടിരിക്കുന്ന മറ്റൊരു സിലിണ്ടര് എന്നപോലെയാണ് പൊതുവേ ഇലക്ട്രിക് മോട്ടോറുകളുടെ ഘടന. കറങ്ങാത്ത ഭാഗത്തെ സ്റ്റേറ്റര് എന്നും കറങ്ങുന്ന ഭാഗത്തെ റോട്ടര് എന്നും പൊതുവേ പറയാം. നേര്ധാരാ മോട്ടോറുകളില് റോട്ടറിനെ ആര്മേച്ചര് എന്നു വ്യവഹരിക്കുന്നു. കറങ്ങുന്ന ഭാഗങ്ങളെ താങ്ങുന്ന ഷാഫ്റ്റ്, അനായാസം കറങ്ങാനനുവദിക്കുന്ന ബെയ്റിങ്ങുകള്, യന്ത്രഭാഗങ്ങളെ തണുപ്പിക്കാന് കാറ്റോട്ടം ഉറപ്പുവരുത്തുന്ന ഫാനുകള്, വൈദ്യുതബന്ധം സ്ഥാപിക്കുവാനാവശ്യമായ ബ്രഷുകള് ഇവയും മോട്ടോറിന്റെ പൊതുഘടനയില്പ്പെടുന്നു. |
കറങ്ങുന്ന ഭാഗമായ റോട്ടറില് ഒരു ഇരുമ്പുകാമ്പും അതില് ചാലുകള് വെട്ടി പ്രത്യേക രോധനപദാര്ഥങ്ങളില് പൊതിഞ്ഞുവച്ചിരിക്കുന്ന വാഹികളും ഉണ്ടായിരിക്കും. ഇതിനുപുറമേ എല്ലാ നേര്ധാരാ മോട്ടോറുകളിലും കമ്യൂട്ടേറ്റര് എന്ന ഭാഗവും കറങ്ങുന്ന ഭാഗത്തുണ്ടായിരിക്കും. നേര്ധാരാ മോട്ടോറില് കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്ന ഭാഗം സ്ഥിരവും ആര്മേച്ചര് കറങ്ങുന്നതുമായിരിക്കണം. | കറങ്ങുന്ന ഭാഗമായ റോട്ടറില് ഒരു ഇരുമ്പുകാമ്പും അതില് ചാലുകള് വെട്ടി പ്രത്യേക രോധനപദാര്ഥങ്ങളില് പൊതിഞ്ഞുവച്ചിരിക്കുന്ന വാഹികളും ഉണ്ടായിരിക്കും. ഇതിനുപുറമേ എല്ലാ നേര്ധാരാ മോട്ടോറുകളിലും കമ്യൂട്ടേറ്റര് എന്ന ഭാഗവും കറങ്ങുന്ന ഭാഗത്തുണ്ടായിരിക്കും. നേര്ധാരാ മോട്ടോറില് കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്ന ഭാഗം സ്ഥിരവും ആര്മേച്ചര് കറങ്ങുന്നതുമായിരിക്കണം. | ||
വരി 31: | വരി 37: | ||
8, 9, 10. ലോക്ക് വാഷറുകളോടുകൂടിയ വിവിധതരം സ്ക്രൂകള്]] | 8, 9, 10. ലോക്ക് വാഷറുകളോടുകൂടിയ വിവിധതരം സ്ക്രൂകള്]] | ||
- | നേര്ധാരാമോട്ടോറിന് ഒന്നോ അധികമോ ജോടി ധ്രുവങ്ങളുണ്ടായിരിക്കും. ഇതിനുള്ള നിര്മിതികള് അകത്തേക്ക് തള്ളിനില്ക്കുന്നതായി കാണാം. ചില യന്ത്രങ്ങളില് പ്രധാന ധ്രുവങ്ങള്ക്കിടയില് ചില ചെറുധ്രുവങ്ങള് (interpols) | + | നേര്ധാരാമോട്ടോറിന് ഒന്നോ അധികമോ ജോടി ധ്രുവങ്ങളുണ്ടായിരിക്കും. ഇതിനുള്ള നിര്മിതികള് അകത്തേക്ക് തള്ളിനില്ക്കുന്നതായി കാണാം. ചില യന്ത്രങ്ങളില് പ്രധാന ധ്രുവങ്ങള്ക്കിടയില് ചില ചെറുധ്രുവങ്ങള് (interpols) കൂടി ഉണ്ടായിരിക്കും. പ്രധാന ധ്രുവങ്ങളുടെ കമ്പിച്ചുരുളുകള് ഒന്നിനുമീതെ ഒന്നായി തുടര്ച്ചയായി ചുറ്റുന്നു. ഓരോ ധ്രുവത്തിലും ഉള്ള ചുരുളുകളെ ശ്രേണിയായി ബന്ധിച്ചാണ് കാന്തമണ്ഡലപരിപഥം ഉണ്ടാക്കുന്നത്. വിപരീത ധ്രുവങ്ങള് ലഭിക്കാന് ഒന്നിടവിട്ട ധ്രുവങ്ങളില് ചുരുളുകളിലെ ധാര എതിര്ദിശയിലായിരിക്കും. |
- | നേര്ധാരാ മോട്ടോറുകള് | + | '''നേര്ധാരാ മോട്ടോറുകള്''' |
- | പ്രവര്ത്തനതത്ത്വം. ഒരു കാന്തമണ്ഡലത്തില് സ്ഥിതിചെയ്യുന്നതും വൈദ്യുതധാര ഉള്ളതുമായ ഒരു വാഹിയിന്മേല് ഒരു യാന്ത്രികബലം പ്രവര്ത്തിച്ചുകൊണ്ടിരിക്കും. വാഹിക്ക് | + | '''പ്രവര്ത്തനതത്ത്വം.''' ഒരു കാന്തമണ്ഡലത്തില് സ്ഥിതിചെയ്യുന്നതും വൈദ്യുതധാര ഉള്ളതുമായ ഒരു വാഹിയിന്മേല് ഒരു യാന്ത്രികബലം പ്രവര്ത്തിച്ചുകൊണ്ടിരിക്കും. വാഹിക്ക് ചലനസ്വാതന്ത്ര്യമുണ്ടെങ്കില് അത് ചലിക്കുന്നു. "ഇടംകൈ നിയമം' അനുസരിച്ച് ധാരയുടെ ദിശ, കാന്തമണ്ഡലദിശ, ബലം പ്രവര്ത്തിക്കുന്ന ദിശ ഇവ മൂന്നും അന്യോന്യം ലംബമായിരിക്കും. |
- | രണ്ടു ധ്രുവങ്ങളും രണ്ടുവാഹികള് ചേര്ത്തുണ്ടാക്കിയ ഒരു ചുരുളും മാത്രം അടങ്ങിയതാണ് മോട്ടോര് എന്നു സങ്കല്പിക്കുക. ഉത്തര-ദക്ഷിണ (N-S) മുഖ്യധ്രുവങ്ങളാണ്. ഇവ ആവശ്യമായ കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്നു. ആര്മേച്ചറില് രണ്ടു ചാലുകളും അവയില് ഓരോന്നിലും ഓരോ പകുതി വരത്തക്കവണ്ണം ചുരുളും ഏര്പ്പെടുത്തിയിരിക്കുന്നു. ഒരു ചുരുള്പാതി ഉത്തരധ്രുവത്തിനു കീഴില് വരുമ്പോള് മറ്റേത് ദക്ഷിണധ്രുവത്തിനു നേരെ കീഴില് വരും. ഈ ചുരുളിനെതിരെ ഒരു വിദ്യുത്ചാലകബലം പ്രയോഗിക്കുമ്പോള് ചുരുളിലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നു. ഒരേ ചുരുളിന്റെ രണ്ടുഭാഗങ്ങളാകയാല് ഒന്നിലൂടെ പ്രവേശിക്കുന്ന ധാര മറ്റേതിലൂടെ പുറത്തുകടക്കുന്നു. എന്നാല് അവ രണ്ടും സ്ഥിതിചെയ്യുന്നത് എതിര്ധ്രുവങ്ങള്ക്കിടയിലാണ്. മാത്രമല്ല, രണ്ടു ചുരുള്പാതിയിലൂടെയും ഒരേ ധാര ഒഴുകുന്നു. തുല്യശക്തിയുള്ള ധ്രുവങ്ങള്ക്കിടയിലാണ് രണ്ടും. മോട്ടോര് ഉത്പാദിപ്പിക്കുന്ന ബലം അതിനാല് ഒരു ബലയുഗ്മമായി പ്രവര്ത്തിക്കുന്നു. ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാന് കഴിയും. ഒരു ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാനുള്ള ശേഷിയുടെ അളവാണ് "ടോര്ക്ക്' എന്ന് അറിയപ്പെടുന്നത്. ബലയുഗ്മത്തിലെ ബലങ്ങള് തമ്മിലുള്ള അകലവും അതിലൊരുബലവും ഗുണിച്ചു കിട്ടുന്നതാണ് ടോര്ക്ക് മൂല്യം. ഷാഫ്റ്റിനെ ചലിപ്പിക്കുന്നത് ഈ ടോര്ക്ക് ആണ്. ആര്മേച്ചറിനു കറങ്ങാന് | + | |
+ | രണ്ടു ധ്രുവങ്ങളും രണ്ടുവാഹികള് ചേര്ത്തുണ്ടാക്കിയ ഒരു ചുരുളും മാത്രം അടങ്ങിയതാണ് മോട്ടോര് എന്നു സങ്കല്പിക്കുക. ഉത്തര-ദക്ഷിണ (N-S) മുഖ്യധ്രുവങ്ങളാണ്. ഇവ ആവശ്യമായ കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്നു. ആര്മേച്ചറില് രണ്ടു ചാലുകളും അവയില് ഓരോന്നിലും ഓരോ പകുതി വരത്തക്കവണ്ണം ചുരുളും ഏര്പ്പെടുത്തിയിരിക്കുന്നു. ഒരു ചുരുള്പാതി ഉത്തരധ്രുവത്തിനു കീഴില് വരുമ്പോള് മറ്റേത് ദക്ഷിണധ്രുവത്തിനു നേരെ കീഴില് വരും. ഈ ചുരുളിനെതിരെ ഒരു വിദ്യുത്ചാലകബലം പ്രയോഗിക്കുമ്പോള് ചുരുളിലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നു. ഒരേ ചുരുളിന്റെ രണ്ടുഭാഗങ്ങളാകയാല് ഒന്നിലൂടെ പ്രവേശിക്കുന്ന ധാര മറ്റേതിലൂടെ പുറത്തുകടക്കുന്നു. എന്നാല് അവ രണ്ടും സ്ഥിതിചെയ്യുന്നത് എതിര്ധ്രുവങ്ങള്ക്കിടയിലാണ്. മാത്രമല്ല, രണ്ടു ചുരുള്പാതിയിലൂടെയും ഒരേ ധാര ഒഴുകുന്നു. തുല്യശക്തിയുള്ള ധ്രുവങ്ങള്ക്കിടയിലാണ് രണ്ടും. മോട്ടോര് ഉത്പാദിപ്പിക്കുന്ന ബലം അതിനാല് ഒരു ബലയുഗ്മമായി പ്രവര്ത്തിക്കുന്നു. ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാന് കഴിയും. ഒരു ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാനുള്ള ശേഷിയുടെ അളവാണ് "ടോര്ക്ക്' എന്ന് അറിയപ്പെടുന്നത്. ബലയുഗ്മത്തിലെ ബലങ്ങള് തമ്മിലുള്ള അകലവും അതിലൊരുബലവും ഗുണിച്ചു കിട്ടുന്നതാണ് ടോര്ക്ക് മൂല്യം. ഷാഫ്റ്റിനെ ചലിപ്പിക്കുന്നത് ഈ ടോര്ക്ക് ആണ്. ആര്മേച്ചറിനു കറങ്ങാന് സ്വാതന്ത്ര്യമുള്ളതുകൊണ്ട് ചിത്രം 2-ല് കാണിച്ചിരിക്കുന്നവിധം ആര്മേച്ചര് പ്രദക്ഷിണദിശയില് കറങ്ങിത്തുടങ്ങും. പക്ഷേ, ഒരു ചുരുള് മാത്രമേ ഉള്ളൂ എങ്കില് അതു നീങ്ങുന്നതിനനുസരിച്ച് ടോര്ക്കിന്റെ അളവും വ്യത്യാസപ്പെടുന്നു. ധ്രുവമധ്യത്തിലായിരിക്കുമ്പോള് ഏറ്റവും കൂടിയ ടോര്ക്കും രണ്ടു ധ്രുവങ്ങള്ക്കുനേരെ നടുവിലായിരിക്കുമ്പോള് ടോര്ക്ക് ഒട്ടും ഇല്ലാത്ത അവസ്ഥയും അനുഭവപ്പെടുന്നു. പ്രായോഗിക മോട്ടോറുകളില് ഒന്നിലധികം ചുരുളുകള് ഉള്ളതിനാല് ഏതുസമയത്തും കുറേ ചുരുളുകളുടെ ടോര്ക്ക് തുടര്ച്ചയായി ലഭ്യമായിക്കൊണ്ടിരിക്കും. | ||
[[ചിത്രം:Vol4_315_2.jpg|thumb|ചിത്രം 2. നേര്ധാരാ മോട്ടോര്: | [[ചിത്രം:Vol4_315_2.jpg|thumb|ചിത്രം 2. നേര്ധാരാ മോട്ടോര്: | ||
A. കാന്തികമണ്ഡലം B. ചുറ്റുന്ന ദിശ C. ആര്മേച്ചര് ഷാഫ്റ്റ്]] | A. കാന്തികമണ്ഡലം B. ചുറ്റുന്ന ദിശ C. ആര്മേച്ചര് ഷാഫ്റ്റ്]] | ||
വരി 45: | വരി 52: | ||
- | ആര്മേച്ചറിനെ അപേക്ഷിച്ച് കാന്തച്ചുരുള് ഘടിപ്പിക്കുന്നവിധം ആസ്പദമാക്കി നേര്ധാരാ മോട്ടോറുകളെ | + | ആര്മേച്ചറിനെ അപേക്ഷിച്ച് കാന്തച്ചുരുള് ഘടിപ്പിക്കുന്നവിധം ആസ്പദമാക്കി നേര്ധാരാ മോട്ടോറുകളെ ശ്രേണി (series), സമാന്തരം (shunt), സംയുക്തം (compound) എന്നിങ്ങനെ മൂന്നായി തരംതിരിക്കാം. സംയുക്തസമ്പ്രദായത്തില് ശ്രണിയിലും സമാന്തരത്തിലുമുള്ള ഓരോ മണ്ഡലച്ചുരുളുകള് ഉണ്ടാവും. ഇവയുടെ മണ്ഡലങ്ങള് പരസ്പരം ബലപ്പെടുത്തുകയോ ക്ഷയിപ്പിക്കുകയോ ആവാം. അതനുസരിച്ച് മോട്ടോറിന്റെ പ്രവര്ത്തനസ്വഭാവത്തിലും വ്യത്യാസങ്ങള് വരുന്നു. |
- | [[ചിത്രം:Vol4_316_2.jpg|thumb| | + | [[ചിത്രം:Vol4_316_2.jpg|thumb|ശ്രേണിമോട്ടോര് (സ്ലോത് ചിത്രം)]] |
- | സ്റ്റാര്ട്ടര്. നേര്ധാരാമോട്ടോറുകളെ ഒരു സ്റ്റാര്ട്ടറിന്റെ അഭാവത്തില് സ്റ്റാര്ട്ടാക്കാവുന്നതല്ല. എതിര് വിദ്യുത്ചാലകബലവും വോള്ട്ടതയും തമ്മിലുള്ള വ്യത്യാസത്തിന്റെ അനുപാതത്തിലാണ് ആര്മേച്ചറിലേക്കുള്ള വൈദ്യുത പ്രവാഹം. സ്റ്റാര്ട്ടാക്കുമ്പോള്, യന്ത്രം പൂര്ണവേഗം ആര്ജിച്ചിട്ടില്ലാത്തതിനാല് എതിര്വിദ്യുത്ചാലകബലം വളരെക്കുറവോ പൂജ്യമോ ആയിരിക്കും. വലിയൊരു വിദ്യുത്ധാര മോട്ടോറിലേക്കൊഴുകുക എന്നതാവും ഇതിന്റെ ഫലം. ഇതു തടയാന് പരിപഥത്തില് ഒരു പ്രതിരോധം ക്രമീകരിച്ച് പടിപടിയായി അത് ഒഴിവാക്കുകയും ചെയ്യേണ്ടതാണ്. ഫേസ്പ്ലേറ്റ് സ്റ്റാര്ട്ടര് ആണ് ഇതിനായി പൊതുവേ ഉപയോഗിക്കുന്നത്. വൈദ്യുതി നിലയ്ക്കുകയും അധികധാര ഒഴുകാനിടയാവുകയും ചെയ്യുന്ന സന്ദര്ഭങ്ങളില് സ്റ്റാര്ട്ടര്പിടി ഉടന്തന്നെ "ഓഫ്' നിലയിലേക്ക് സ്വയം തിരിച്ചുപോവാനുള്ള റിലേസംവിധാനങ്ങള് സ്റ്റാര്ട്ടറില് ഉണ്ടായിരിക്കും. ഇങ്ങനെ ചെയ്തില്ലെങ്കില് മോട്ടോര് കത്തിപ്പോവാനിടയാകും. വൈദ്യുതി നിലച്ച് വീണ്ടും വരുമ്പോള് മുഴുവന് വോള്ട്ടതയും പൊടുന്നനെ മോട്ടോറില് ഏല്പിക്കുന്നത് വിനാശഹേതുവാകാം (ചിത്രം 4). | + | '''സ്റ്റാര്ട്ടര്.''' നേര്ധാരാമോട്ടോറുകളെ ഒരു സ്റ്റാര്ട്ടറിന്റെ അഭാവത്തില് സ്റ്റാര്ട്ടാക്കാവുന്നതല്ല. എതിര് വിദ്യുത്ചാലകബലവും വോള്ട്ടതയും തമ്മിലുള്ള വ്യത്യാസത്തിന്റെ അനുപാതത്തിലാണ് ആര്മേച്ചറിലേക്കുള്ള വൈദ്യുത പ്രവാഹം. സ്റ്റാര്ട്ടാക്കുമ്പോള്, യന്ത്രം പൂര്ണവേഗം ആര്ജിച്ചിട്ടില്ലാത്തതിനാല് എതിര്വിദ്യുത്ചാലകബലം വളരെക്കുറവോ പൂജ്യമോ ആയിരിക്കും. വലിയൊരു വിദ്യുത്ധാര മോട്ടോറിലേക്കൊഴുകുക എന്നതാവും ഇതിന്റെ ഫലം. ഇതു തടയാന് പരിപഥത്തില് ഒരു പ്രതിരോധം ക്രമീകരിച്ച് പടിപടിയായി അത് ഒഴിവാക്കുകയും ചെയ്യേണ്ടതാണ്. ഫേസ്പ്ലേറ്റ് സ്റ്റാര്ട്ടര് ആണ് ഇതിനായി പൊതുവേ ഉപയോഗിക്കുന്നത്. വൈദ്യുതി നിലയ്ക്കുകയും അധികധാര ഒഴുകാനിടയാവുകയും ചെയ്യുന്ന സന്ദര്ഭങ്ങളില് സ്റ്റാര്ട്ടര്പിടി ഉടന്തന്നെ "ഓഫ്' നിലയിലേക്ക് സ്വയം തിരിച്ചുപോവാനുള്ള റിലേസംവിധാനങ്ങള് സ്റ്റാര്ട്ടറില് ഉണ്ടായിരിക്കും. ഇങ്ങനെ ചെയ്തില്ലെങ്കില് മോട്ടോര് കത്തിപ്പോവാനിടയാകും. വൈദ്യുതി നിലച്ച് വീണ്ടും വരുമ്പോള് മുഴുവന് വോള്ട്ടതയും പൊടുന്നനെ മോട്ടോറില് ഏല്പിക്കുന്നത് വിനാശഹേതുവാകാം (ചിത്രം 4). |
+ | |||
+ | [[ചിത്രം:Vol4_316_3.jpg|thumb]] | ||
- | + | '''ഉപയോഗങ്ങള്.''' ഗണ്യമായ വേഗവ്യത്യാസം എളുപ്പത്തില് ലഭിക്കേണ്ട അവസരങ്ങളിലും ഡെലിവറി വാനുകള്, പ്ലാറ്റ്ഫോം ട്രക്കുകള്, ഇലക്ട്രിക് ട്രെയിനുകള്, നിയന്ത്രണസംവിധാനങ്ങള് എന്നിവയിലും നേര്ധാരാ മോട്ടോറുകള് ഉപയോഗിക്കുന്നു. പ്രവര്ത്തനം ആരംഭിക്കുന്ന സമയത്ത് കൂടുതല് ഭാരം താങ്ങാനുള്ള ശ്രേണീമോട്ടോറുകള് ഇലക്ട്രിക് ട്രെയിനുകളിലും മറ്റും വളരെയധികം ഉപയോഗപ്രദമാണ്. ഏതാണ്ട് സ്ഥിരവേഗം ലഭ്യമാവുന്ന ഷണ്ട്സ്വഭാവം ഒട്ടൊക്കെ ഉള്ളതിനാല് ചില പ്രവര്ത്തനമേഖലകളില് ദൃഢവും ചെലവുകുറഞ്ഞതുമായ പ്രേരണമോട്ടോറുകള് നേര്ധാരാ മോട്ടോറുകളെ പിന്തള്ളിവരികയാണ്. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | '''പ്രത്യേകതരം മോട്ടോറുകള്.''' പ്രത്യാവര്ത്തിധാര ഉപയോഗിച്ചു പ്രവര്ത്തിക്കുന്ന ചില പ്രത്ര്യേക ഇനം മോട്ടോറുകളും ഉണ്ട്. | |
- | പ്രത്യേകതരം മോട്ടോറുകള്. പ്രത്യാവര്ത്തിധാര ഉപയോഗിച്ചു പ്രവര്ത്തിക്കുന്ന ചില | + | |
- | i. മണ്ഡലച്ചുരുളില്ലാത്ത സിങ്ക്രണനമോട്ടോറുകള്, ഹിസ്റ്ററെസിസ് മോട്ടോറുകള്. ചെറിയ ചില സിങ്ക്രണനമോട്ടോറുകളില് സിങ്ക്രണനപ്രവര്ത്തനത്തിന് അവശ്യം വേണ്ടുന്ന നേര്ധാര ഒഴിവാക്കാന് കഴിഞ്ഞിട്ടുണ്ട്. സ്ഥിരകാന്തം ഉണ്ടാക്കാനുപയോഗിക്കുന്നതരം ഉരുക്കുകാമ്പുകൊണ്ട് ധ്രുവഭാഗം നിര്മിക്കുന്നു. സ്ഥിരമായ ഒരു ശിഷ്ടകാന്തമണ്ഡലം ഈ കാന്തഭാഗത്തിലുണ്ടാവുന്ന വിധമാണ് നിര്മാണസംവിധാനം. ഹിസ്റ്ററെസിസ് മോട്ടോറുകളില് വലിയ ഹിസ്റ്ററെസിസ് വലയം വിശേഷകമായുള്ള ഉരുക്കുതകിടുകള് അടുക്കിയാണ് റോട്ടര് നിര്മിക്കുന്നത്. ചുഴിയന്ധാര, ഹിസ്റ്റെറെസിസ് നഷ്ടം എന്നിവകൊണ്ടുണ്ടാകുന്ന ശക്തിയാല് റോട്ടര് താനേ കറങ്ങിത്തുടങ്ങുന്നു. സിങ്ക്രണനവേഗം ഏതാണ്ടെത്തുമ്പോള് കറങ്ങുന്ന കാന്തമണ്ഡലവുമായി ഇത് സ്വയം ബന്ധിതമാവുന്നു. തുടര്ന്ന് സിങ്ക്രണനവേഗത്തില് ഓടിക്കൊള്ളും. നേര്ധാരാ സപ്ലൈ ഒഴിവാക്കാമെന്നത് വലിയൊരു സൗകര്യമാണ്. നിര്ദിഷ്ടഭാരത്തിന് ഉത്പാദിപ്പിക്കാവുന്ന വിദ്യുത്ശക്തി, നേര്ധാര കൊണ്ടുള്ള കാന്തമണ്ഡലത്തോടു കൂടിയ സിങ്ക്രണനമോട്ടോറുകളെക്കാള് കുറവാണ്. വിമാനങ്ങളിലും കപ്പലുകളിലും മറ്റും ദിശാനിയന്ത്രണസംവിധാനങ്ങള് ഉണ്ടാക്കാനും റെക്കാര്ഡ് പ്ലേയറുകള്, ടേപ്പ്റെക്കാര്ഡറുകള്, ക്ലോക്കുകള് തുടങ്ങി വിദ്യുച്ഛക്തി അധികം ആവശ്യമില്ലാത്തതും ക്ഷമതയ്ക്ക് പ്രസക്തി ഇല്ലാത്തതുമായ ഉപയോഗങ്ങള്ക്കും ഇത്തരം മോട്ടോറുകള് അത്യുത്തമമാണ്. 200 വാട്ട് വരെ ശക്തിയുള്ള ഇത്തരം മോട്ടോറുകളുടെ ക്ഷമത 80 ശതമാനം വരെ ഉയര്ന്നിരിക്കും. | + | '''i. മണ്ഡലച്ചുരുളില്ലാത്ത സിങ്ക്രണനമോട്ടോറുകള്, ഹിസ്റ്ററെസിസ് മോട്ടോറുകള്.''' ചെറിയ ചില സിങ്ക്രണനമോട്ടോറുകളില് സിങ്ക്രണനപ്രവര്ത്തനത്തിന് അവശ്യം വേണ്ടുന്ന നേര്ധാര ഒഴിവാക്കാന് കഴിഞ്ഞിട്ടുണ്ട്. സ്ഥിരകാന്തം ഉണ്ടാക്കാനുപയോഗിക്കുന്നതരം ഉരുക്കുകാമ്പുകൊണ്ട് ധ്രുവഭാഗം നിര്മിക്കുന്നു. സ്ഥിരമായ ഒരു ശിഷ്ടകാന്തമണ്ഡലം ഈ കാന്തഭാഗത്തിലുണ്ടാവുന്ന വിധമാണ് നിര്മാണസംവിധാനം. ഹിസ്റ്ററെസിസ് മോട്ടോറുകളില് വലിയ ഹിസ്റ്ററെസിസ് വലയം വിശേഷകമായുള്ള ഉരുക്കുതകിടുകള് അടുക്കിയാണ് റോട്ടര് നിര്മിക്കുന്നത്. ചുഴിയന്ധാര, ഹിസ്റ്റെറെസിസ് നഷ്ടം എന്നിവകൊണ്ടുണ്ടാകുന്ന ശക്തിയാല് റോട്ടര് താനേ കറങ്ങിത്തുടങ്ങുന്നു. സിങ്ക്രണനവേഗം ഏതാണ്ടെത്തുമ്പോള് കറങ്ങുന്ന കാന്തമണ്ഡലവുമായി ഇത് സ്വയം ബന്ധിതമാവുന്നു. തുടര്ന്ന് സിങ്ക്രണനവേഗത്തില് ഓടിക്കൊള്ളും. നേര്ധാരാ സപ്ലൈ ഒഴിവാക്കാമെന്നത് വലിയൊരു സൗകര്യമാണ്. നിര്ദിഷ്ടഭാരത്തിന് ഉത്പാദിപ്പിക്കാവുന്ന വിദ്യുത്ശക്തി, നേര്ധാര കൊണ്ടുള്ള കാന്തമണ്ഡലത്തോടു കൂടിയ സിങ്ക്രണനമോട്ടോറുകളെക്കാള് കുറവാണ്. വിമാനങ്ങളിലും കപ്പലുകളിലും മറ്റും ദിശാനിയന്ത്രണസംവിധാനങ്ങള് ഉണ്ടാക്കാനും റെക്കാര്ഡ് പ്ലേയറുകള്, ടേപ്പ്റെക്കാര്ഡറുകള്, ക്ലോക്കുകള് തുടങ്ങി വിദ്യുച്ഛക്തി അധികം ആവശ്യമില്ലാത്തതും ക്ഷമതയ്ക്ക് പ്രസക്തി ഇല്ലാത്തതുമായ ഉപയോഗങ്ങള്ക്കും ഇത്തരം മോട്ടോറുകള് അത്യുത്തമമാണ്. 200 വാട്ട് വരെ ശക്തിയുള്ള ഇത്തരം മോട്ടോറുകളുടെ ക്ഷമത 80 ശതമാനം വരെ ഉയര്ന്നിരിക്കും. |
- | ii. റിലക്റ്റന്സ് മോട്ടോറുകള് (Reluctance Motors). ഇവയില് റോട്ടര് ചുരുളുകള് ഇല്ലെന്നു മാത്രമല്ല, റോട്ടറില് വെറുതെ പൊഴികള് ഇട്ടിരിക്കുകയും ചെയ്യും. നിര്മിക്കാന് എളുപ്പമാണ്. കൂടുതല് ഭാരം വഹിക്കാനുള്ള ശേഷിയും ഇത്തരം മോട്ടോറുകള്ക്കുണ്ട്. സാധാരണ നിലയില്, കൂടിയ ശക്തിനിലവാരം ഒരു കുതിരശക്തിയാണ്. സ്വയമേവ സിങ്ക്രണനവേഗത്തിലെത്തുന്നു. വല്ല കാരണവശാലും റോട്ടര് കറങ്ങുന്ന കാന്തമണ്ഡലത്തിനു പിറകിലായിപ്പോവുകയാണെങ്കില് അതിനര്ഥം വായുവിടവില് സംഭരിച്ചിരിക്കുന്ന ശരാശരി കാന്ത-ഊര്ജത്തിന് കുറവു വന്നിരിക്കുന്നുവെന്നാണ്. ഇത് സ്വാഭാവികമായും കൂടുതല് ടോര്ക്ക് ഉത്പാദിപ്പിക്കുന്നു. ഇക്കാരണത്താല് റോട്ടര് വീണ്ടും സിങ്ക്രണനവേഗം ആര്ജിക്കുന്നു. | + | '''ii. റിലക്റ്റന്സ് മോട്ടോറുകള്''' (Reluctance Motors). ഇവയില് റോട്ടര് ചുരുളുകള് ഇല്ലെന്നു മാത്രമല്ല, റോട്ടറില് വെറുതെ പൊഴികള് ഇട്ടിരിക്കുകയും ചെയ്യും. നിര്മിക്കാന് എളുപ്പമാണ്. കൂടുതല് ഭാരം വഹിക്കാനുള്ള ശേഷിയും ഇത്തരം മോട്ടോറുകള്ക്കുണ്ട്. സാധാരണ നിലയില്, കൂടിയ ശക്തിനിലവാരം ഒരു കുതിരശക്തിയാണ്. സ്വയമേവ സിങ്ക്രണനവേഗത്തിലെത്തുന്നു. വല്ല കാരണവശാലും റോട്ടര് കറങ്ങുന്ന കാന്തമണ്ഡലത്തിനു പിറകിലായിപ്പോവുകയാണെങ്കില് അതിനര്ഥം വായുവിടവില് സംഭരിച്ചിരിക്കുന്ന ശരാശരി കാന്ത-ഊര്ജത്തിന് കുറവു വന്നിരിക്കുന്നുവെന്നാണ്. ഇത് സ്വാഭാവികമായും കൂടുതല് ടോര്ക്ക് ഉത്പാദിപ്പിക്കുന്നു. ഇക്കാരണത്താല് റോട്ടര് വീണ്ടും സിങ്ക്രണനവേഗം ആര്ജിക്കുന്നു. |
- | ഇലക്ട്രിക് ക്ലോക്കുകള്. ഇതിന് ഒറ്റഫേസ് മോട്ടോറുകള് ഉപയോഗിക്കുന്നു. രണ്ടു ധ്രുവങ്ങളുള്ള ഒരു കറങ്ങുന്ന കാന്തമണ്ഡലം ലഭ്യമാക്കാന് ഷേഡഡ്പോള് നിര്മാണരീതി ഉപയോഗിക്കുന്നു. ഒന്നിലധികം സ്റ്റേറ്റര് ചുരുളുകള് ഏര്പ്പെടുത്തുകയും അവ മുഖ്യചുരുളില് നിന്നു കാന്തികമായി അകലത്താക്കിവയ്ക്കുകയും ചുരുളുകളെ ഷോര്ട്ട് സര്ക്യൂട്ട് ആക്കുകയും ചെയ്യുന്നു. സീല് ചെയ്ത ഒരു ലോഹപ്പെട്ടിക്കകത്ത്, പ്രത്യേക കാന്തികഗുണങ്ങളുള്ള ദൃഢീകരിച്ച കുറേ ഉരുക്കുതകിടുകള് ക്രമീകരിച്ചിരിക്കും. കറങ്ങുന്ന കാന്തികമണ്ഡലം തകിടുകളുമായി പ്രതിപ്രവര്ത്തിച്ച് ഉണ്ടാവുന്ന ചുഴി ധാര കാരണം മോട്ടോര് സ്വയം സ്റ്റാര്ട്ടാകുന്നു. മിനിട്ടില് 3000-3600 ഭ്രമണങ്ങള് എന്നതാണ് സാധാരണ വേഗം. സീല് ചെയ്യപ്പെട്ട ഒരു ഗിയര്സംവിധാനം മോട്ടോറിന്റെ ഭ്രമണ വേഗതയെ മിനിറ്റില് ഒരു കറക്കം എന്ന തോതില് ക്രമീകരിക്കുന്നു. ഇത്തരം മോട്ടോറിന്റെ പ്രവര്ത്തനക്ഷമത ഒരു ശതമാനത്തില് കുറവാണെങ്കിലും നിര്മാണച്ചെലവും പ്രവര്ത്തനച്ചെലവും | + | ഇലക്ട്രിക് ക്ലോക്കുകള്. ഇതിന് ഒറ്റഫേസ് മോട്ടോറുകള് ഉപയോഗിക്കുന്നു. രണ്ടു ധ്രുവങ്ങളുള്ള ഒരു കറങ്ങുന്ന കാന്തമണ്ഡലം ലഭ്യമാക്കാന് ഷേഡഡ്പോള് നിര്മാണരീതി ഉപയോഗിക്കുന്നു. ഒന്നിലധികം സ്റ്റേറ്റര് ചുരുളുകള് ഏര്പ്പെടുത്തുകയും അവ മുഖ്യചുരുളില് നിന്നു കാന്തികമായി അകലത്താക്കിവയ്ക്കുകയും ചുരുളുകളെ ഷോര്ട്ട് സര്ക്യൂട്ട് ആക്കുകയും ചെയ്യുന്നു. സീല് ചെയ്ത ഒരു ലോഹപ്പെട്ടിക്കകത്ത്, പ്രത്യേക കാന്തികഗുണങ്ങളുള്ള ദൃഢീകരിച്ച കുറേ ഉരുക്കുതകിടുകള് ക്രമീകരിച്ചിരിക്കും. കറങ്ങുന്ന കാന്തികമണ്ഡലം തകിടുകളുമായി പ്രതിപ്രവര്ത്തിച്ച് ഉണ്ടാവുന്ന ചുഴി ധാര കാരണം മോട്ടോര് സ്വയം സ്റ്റാര്ട്ടാകുന്നു. മിനിട്ടില് 3000-3600 ഭ്രമണങ്ങള് എന്നതാണ് സാധാരണ വേഗം. സീല് ചെയ്യപ്പെട്ട ഒരു ഗിയര്സംവിധാനം മോട്ടോറിന്റെ ഭ്രമണ വേഗതയെ മിനിറ്റില് ഒരു കറക്കം എന്ന തോതില് ക്രമീകരിക്കുന്നു. ഇത്തരം മോട്ടോറിന്റെ പ്രവര്ത്തനക്ഷമത ഒരു ശതമാനത്തില് കുറവാണെങ്കിലും നിര്മാണച്ചെലവും പ്രവര്ത്തനച്ചെലവും തരതമ്യേന കുറവാണ്. സിങ്ക്രണനവേഗത്തില് ഓടുകയെന്നതു മാത്രമാണ് ലക്ഷ്യം. അതുകൊണ്ട് ഈ ക്ഷമത തികച്ചും സ്വീകാര്യമാണ്. ഗൃഹങ്ങളില് ഉപയോഗിക്കുന്ന സാധാരണ പ്ലഗ്ഗ്പോയിന്റ് വഴി വൈദ്യുതി ലഭ്യമാക്കാനും സാധിക്കും. |
- | [[ചിത്രം:Vol4_317_1.jpg|thumb | + | [[ചിത്രം:Vol4_317_1.jpg|thumb]] |
- | + | '''iii. രേഖീയമോട്ടോറുകള്''' (linear motors).ഒരു പ്രേരണ മോട്ടോറിന്റെ പരിച്ഛേദം നിവര്ത്തിവച്ചാല് എങ്ങനെ ഇരിക്കുമോ അതാവും രേഖീയ മോട്ടോറിന്റെ രൂപം. ഉന്നത വേഗം ആവശ്യമായ ട്രെയിനുകള്ക്കും മറ്റും രേഖീയ മോട്ടോര് ഉപകരിക്കും. ചാലകപദാര്ഥങ്ങള്, പ്രത്യേകിച്ച് റേഡിയോആക്റ്റീവതയുള്ളവ പമ്പുചെയ്യാന് രേഖീയമോട്ടോര് പമ്പുകള് സുരക്ഷിതമായി ഉപയോഗിക്കാം. ഇതിലെ റോട്ടര്കുഴലിലെ അഥവാ സ്ക്രൂ കണ്വേയറിലെ ചാലകദ്രാവകം തന്നെയായിരിക്കും റോട്ടര് ആയി പ്രവര്ത്തിക്കുക. മാറിമാറി വരുന്ന ദ്രവപാളികള് തുടര്ച്ചയായി റോട്ടര് ആയി പ്രവര്ത്തിക്കുന്നു. | |
- | + | ||
- | iii. രേഖീയമോട്ടോറുകള് (linear motors).ഒരു | + | |
- | സ്റ്റെപ്പര് മോട്ടോര്. നാം കൊടുക്കുന്ന വൈദ്യുത പള്സ് അനുസരിച്ച് ഒരു നിശ്ചിത കോണില് തിരിയാന് കഴിയുന്ന മോട്ടോറുകളാണിവ. സ്റ്റെപ്പര് മോട്ടോറിന്റെ വേഗത വൈദ്യുത പള്സിന്റെ ആവൃത്തിക്കും, മോട്ടോര് എത്ര കോണ് അളവില് തിരിയുന്നു എന്നത് പള്സിന്റെ ദൈര്ഘ്യത്തിനും ആനുപാതികമാണ്. ഈ മോട്ടോറിന്റെ ഒരു കറക്കം നിശ്ചിത എണ്ണം പടികള് അഥവാ സ്റ്റെപ്പിലാണ് നിര്വഹിക്കുന്നത്. ഉദാ. ഒരു കറക്കം 200 അല്ലെങ്കില് 400 പടികളായി (steps) | + | '''സ്റ്റെപ്പര് മോട്ടോര്.''' നാം കൊടുക്കുന്ന വൈദ്യുത പള്സ് അനുസരിച്ച് ഒരു നിശ്ചിത കോണില് തിരിയാന് കഴിയുന്ന മോട്ടോറുകളാണിവ. സ്റ്റെപ്പര് മോട്ടോറിന്റെ വേഗത വൈദ്യുത പള്സിന്റെ ആവൃത്തിക്കും, മോട്ടോര് എത്ര കോണ് അളവില് തിരിയുന്നു എന്നത് പള്സിന്റെ ദൈര്ഘ്യത്തിനും ആനുപാതികമാണ്. ഈ മോട്ടോറിന്റെ ഒരു കറക്കം നിശ്ചിത എണ്ണം പടികള് അഥവാ സ്റ്റെപ്പിലാണ് നിര്വഹിക്കുന്നത്. ഉദാ. ഒരു കറക്കം 200 അല്ലെങ്കില് 400 പടികളായി (steps) പൂര്ത്തിയാക്കുന്നു. തന്മൂലം മോട്ടോറിന്റെ ഷാഫ്റ്റ് മേല്പറഞ്ഞ അളവുകളില് യഥാക്രമം 1.8° അഥവാ 0.9° തിരിക്കാവുന്നതാണ്. ഏതെങ്കിലും ഒരുപകരണത്തെ ഒരു നിശ്ചിത കോണില് അളന്നു കറക്കേണ്ടുന്ന സന്ദര്ഭത്തില് സ്റ്റെപ്പര് മോട്ടോര് ഉപയോഗിക്കുന്നു. ഇവ കൂടാതെ തീരെ ചെറിയ കോണുകളില് തിരിക്കാന് കഴിയുന്ന സ്റ്റെപ്പര് മോട്ടോറുകളുണ്ട്. വേരിയബിള് റിലക്ടന്സ്, സ്ഥിര കാന്തരൂപം, സങ്കരരൂപം എന്നിങ്ങനെ മൂന്ന് തരത്തിലുള്ള സ്റ്റെപ്പര് മോട്ടോറുകളുണ്ട്. കംപ്യൂട്ടറിലെ ഹാര്ഡ് ഡിസ്ക് ഡ്രൈവ്, പ്രിന്റര്, പ്ലോട്ടര്, ഫാക്സ് മെഷീന്, മെഡിക്കല് ഉപകരണങ്ങള്, റോബോട്ടുകള് എന്നിവയില് സ്റ്റെപ്പര് മോട്ടോര് ഉപയോഗിക്കുന്നു. ഒരു വൈദ്യുത പള്സ് കൊടുക്കുമ്പോള് ഒരു പടി (step) കറങ്ങുന്നു. |
- | (വി.കെ. ദാമോദരന്, ഡോ. ബി. | + | (വി.കെ. ദാമോദരന്, ഡോ. ബി. പ്രേംലെറ്റ്; സ.പ.) |
Current revision as of 05:27, 12 സെപ്റ്റംബര് 2014
ഇലക്ട്രിക് മോട്ടോര്
Electric Motor
വൈദ്യുതോര്ജത്തെ യാന്ത്രികോര്ജമാക്കി മാറ്റുന്ന ഉപകരണസംവിധാനം. വൈദ്യുത ജനറേറ്ററുകളെ മോട്ടോറുകളായി പ്രവര്ത്തിപ്പിക്കാവുന്നതാണ്. അതുപോലെ തിരിച്ചുള്ള പ്രവര്ത്തനവും സാധ്യമാണ്. വൈദ്യുതസംവിധാനവും യാന്ത്രികസംവിധാനവും തമ്മില് ബന്ധിപ്പിക്കുകയും പരസ്പരം ഊര്ജം കൈമാറുകയും ചെയ്യുന്നതിനുള്ള അഞ്ചുതരം സജ്ജീകരണങ്ങള് നിലവിലുണ്ട്.
വിദ്യുത്കാന്തികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന കാന്തികമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനം മൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇവിടെ പ്രവര്ത്തിക്കുന്നത്.
സ്ഥിരവൈദ്യുതികം. ചലിക്കുന്ന ഭാഗവും ചലിക്കാത്ത ഭാഗവും സൃഷ്ടിക്കുന്ന വൈദ്യുതമണ്ഡലങ്ങളുടെ പരസ്പരപ്രവര്ത്തനംമൂലമുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതിന്റെ അടിസ്ഥാനം.
കാന്തദ്രവഗതികം. വിദ്യുത്ചാലകങ്ങളായ ദ്രവങ്ങളും കാന്തമണ്ഡലവും തമ്മിലുള്ള പരസ്പരപ്രവര്ത്തനം കൊണ്ടുണ്ടാകുന്ന ബലങ്ങളാണ് ഇതില് പ്രാവര്ത്തികമാവുക.
കാന്തികവിരൂപണം (magnetic distortion). അയസ്കാന്തപദാര്ഥങ്ങളില് ബാഹ്യമായ കാന്തമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന സൂക്ഷ്മമായ വലുപ്പവ്യത്യാസമാണ് ഇതിന് ആധാരം.
മര്ദവൈദ്യുതികം. ചില ക്രിസ്റ്റലുകളില് (piezoelectric) വൈദ്യുതമണ്ഡലം ഏല്പിക്കുമ്പോഴുണ്ടാകുന്ന വിരൂപണമാണ് ഇതിന് ആധാരമായിട്ടുള്ളത്.
ഇവയില് ആദ്യത്തെ തത്ത്വം മാത്രമാണ് വന്തോതില് ഇന്ന് ഉപയോഗപ്പെടുത്തിവരുന്നത്. കുറഞ്ഞ ചെലവില് കൂടുതല് ഊര്ജം രൂപാന്തരപ്പെടുത്തുന്ന സംവിധാനം ഇതുതന്നെയാണ്. പമ്പുകള്ക്കും മറ്റും ആവശ്യമായ ആയിരക്കണക്കിന് കുതിരശക്തിയുള്ള മോട്ടോറുകളും നിയന്ത്രണസംവിധാന(control system)ങ്ങള്ക്കുവേണ്ടി പതിനായിരത്തിലൊരംശം മാത്രം കുതിരശക്തിയുള്ള യന്ത്രങ്ങളും വിദ്യുത്കാന്തികതത്ത്വം ഉപയോഗിച്ചു നിര്മിച്ചുവരുന്നു.
അടിസ്ഥാനതത്ത്വങ്ങളുടെ വികാസം. എല്ലാ വിദ്യുത്കാന്തികയന്ത്രങ്ങളുടെയും അടിസ്ഥാനതത്ത്വം, രണ്ടു കാന്തങ്ങളുടെ പരസ്പരം നേരെയാക്കാനുള്ള പ്രവണതയാണ്. യാന്ത്രികനില മാറുന്നതിനനുസരിച്ച് സംഭരിച്ചിരിക്കുന്ന കാന്തികോര്ജത്തില് മാറ്റം സംഭവിക്കുന്നു. ഇതാണ് യാന്ത്രികോര്ജവും വൈദ്യുതോര്ജവും പരസ്പരം മാറ്റാനുള്ള അടിസ്ഥാനപ്രേരണ.
വൈദ്യുതി ഒഴുകിക്കൊണ്ടിരിക്കുന്ന ഒരു കമ്പി, അതിനുചുറ്റും ഒരു കാന്തമണ്ഡലം സൃഷ്ടിക്കുമെന്ന ഡാനിഷ് ശാസ്ത്രജ്ഞനായ ഹാന്സ് ക്രിസ്റ്റ്യന് ഏര്സ്റ്റേഡി (Hans Christian Oersted, 1777-1851)ന്റെ യാദൃച്ഛിക കണ്ടുപിടിത്ത(1820)മാണ് മോട്ടോറുകളുടെ തത്ത്വത്തിനു തുടക്കമിട്ടത്. വൈദ്യുതി വഹിക്കുന്ന ഒരു കമ്പിക്കു സമീപത്തു വയ്ക്കുമ്പോള് കാന്തസൂചി ലംബദിശയില് വികര്ഷിക്കപ്പെടുന്നതായി എര്സ്റ്റെഡ് കണ്ടു. 1821-ല് ഇംഗ്ലണ്ടില് മൈക്കല് ഫാരഡെ (1791-1867) വൈദ്യുതബലങ്ങളെയും കാന്തികബലങ്ങളെയും തുടര്ച്ചയായ യാന്ത്രികചലനമാക്കി പരിവര്ത്തനം ചെയ്യാം എന്ന് തെളിയിച്ചു. 1823-ല് ഇംഗ്ലീഷുകാരനായ വില്യം സ്റ്റര്ജന് (1783-1850) ഒരു ഇരുമ്പുകാമ്പിനു ചുറ്റും 18 ചുറ്റ് കമ്പി ചുറ്റി ആമ്പിയറുടെ സോളിനോയ്ഡ് എന്ന ആശയം പ്രായോഗികമാക്കി. കുതിരലാടത്തിന്റെ ആകൃതിയിലുള്ള ഈ കാന്തത്തെ വാര്ണീഷുപുരട്ടി കമ്പികളില് നിന്നു വേര്തിരിച്ചു നിര്ത്തി. തന്ഭാരത്തെക്കാള് 20 മടങ്ങ് (ഏകദേശം 4 കിലോഗ്രാം) ഭാരം പൊക്കുവാന് ഇതിനു കഴിഞ്ഞു. ജോസഫ് ഹെന്റി എന്ന അമേരിക്കക്കാരന് (1797-1878) 1831-ല് കൂടുതല് ശക്തിയുള്ള ഒരു വിദ്യുത്കാന്തം നിര്മിച്ചു. 341 കിലോഗ്രാം ഉദ്വഹനശക്തിയുള്ളതായിരുന്നു ഹെന്റിയുടെ കാന്തം. കൂടുതല് ചുറ്റ് കമ്പിയിടുമ്പോള് കമ്പികള് തമ്മില് മുട്ടി വൈദ്യുതി നഷ്ടപ്പെടാതിരിക്കാന് കമ്പിക്കു രോധനം കൂട്ടുക എന്ന ആശയം ഇദ്ദേഹം ഉന്നയിച്ചു. അതേവര്ഷം തന്നെ ഇലക്ട്രിക് മോട്ടോറിനെപ്പറ്റി ഒരു പ്രബന്ധവും ഹെന്റി പ്രസിദ്ധീകരിക്കുകയുണ്ടായി. 1833-ല് യു.എസ്സിലെ തോമസ് ഡാവന്പോര്ട്ട് ഒരു ഇലക്ട്രിക് മോട്ടോര് നിര്മിച്ചു. 1835-ല് ജോസഫ് ഹെന്റിയുടെ സര്ട്ടിഫിക്കറ്റോടെ ഡാവന്പോര്ട്ട് മോട്ടോറിനു പേറ്റന്റ് സമ്പാദിച്ചെങ്കിലും അതു സാമ്പത്തികമായി വിജയിച്ചില്ല. പിന്നീട് 1873-ല് ബെല്ജിയന് എന്ജിനീയറായ സെനോബ് തിയൊഫൈല് ഗ്രാം (Zenobe Theophile Gramme) ആണ് വാണിജ്യാടിസ്ഥാനത്തിലുള്ള ആദ്യത്തെ ഇലക്ട്രിക് മോട്ടോര് നിര്മിച്ചത്.
1860-ല്ത്തന്നെ ഇറ്റലിക്കാരനായ പസിനോട്ടി (Pacinotti) ചാലുകളോടുകൂടിയ ആര്മേച്ചറും വലയരൂപത്തിലുള്ള (ring type) ചുരുളുകളും ആവിഷ്കരിച്ചിരുന്നുവെങ്കിലും വാണിജ്യാടിസ്ഥാനത്തില് ഇത് പ്രയോഗിച്ചത് ഗ്രാം ആയിരുന്നു. ഇതിലൂടെ വൈദ്യുതയന്ത്രങ്ങള്ക്ക് വളരെ ഉയര്ന്ന ക്ഷമത കൈവരിക്കാമെന്നു വന്നു. ഇന്നുപയോഗിക്കുന്നതരം വീപ്പപോലുള്ള (drum type) ആര്മേച്ചറുകള് ഹെഫ്നര്-അല്ടെനെക്കിന്റെ സംഭാവനയായിരുന്നു (1871). ആര്മേച്ചറും ധ്രുവങ്ങളും ഉരുക്കുതകിടുകള് അടുക്കി നിര്മിക്കുന്ന രീതി (എഡിസന്-1880, ക്രേഗ്-1883); ചുരുള് ചുറ്റുന്നതിലെ നിലവാരവത്കരണം, സമീകരണ വളയങ്ങള് (equalised rings മോര്ഡി-1883); ഇടധ്രുവങ്ങളും കോമ്പന്സേഷന് ചുരുളുകളും (മേയ്ത്ര്, മെംഗസ്-1885) തുടങ്ങിയ പരിഷ്കാരങ്ങള് നേര്ധാരാ യന്ത്രനിര്മാണത്തില് ആവിഷ്കരിക്കപ്പെട്ടു. ആദ്യകാലത്ത് വലിയൊരു നേര്ധാരാ ജനറേറ്ററില് നിന്ന് ചെറിയ മോട്ടോറുകള്ക്ക് നേരിട്ടു വൈദ്യുതി നല്കുന്ന പതിവാണുണ്ടായിരുന്നത്.
1885-ല് ഇറ്റാലിയന് ശാസ്ത്രജ്ഞനായ ഫെറാരിസ് ആണ് "തിരിയുന്ന കാന്തമണ്ഡലം' (rotating magnetic field) എന്ന ആശയം ഉന്നയിച്ചത്. പ്രത്യാവര്ത്തിധാരാ മോട്ടോറുകള്(A.C. motors)ക്ക്ഇതു വഴിതെളിച്ചു. ഇറ്റലിയില് ഫെറാരിസും 1886-ല് യു.എസ്സില് നിക്കൊളാ ടെസ്ലയും ദ്വിഫേസ് മോട്ടോറുകള് ആവിഷ്കരിച്ചു. 1889-ല് റഷ്യന് ശാസ്ത്രജ്ഞനായ ഡൊലിവോ ഡൊബ്രാേവോള്സ്കി (Dolivo Dobrovolsky) ത്രീഫേസ് പ്രേരണ മോട്ടോറുകള് വിജയപ്രദമായി നിര്മിച്ചു. ഇന്ന് ഉപയോഗത്തിലിരിക്കുന്ന മോട്ടോറുകളില് ഏറിയപങ്കും പ്രേരണമോട്ടോറുകളാണ്.
വിവിധ ഇനങ്ങള്. എല്ലാ മോട്ടോറുകളെയും മുഖ്യമായി രണ്ടുവിഭാഗത്തില് പെടുത്താം. പ്രത്യാവര്ത്തിധാര ഉപയോഗിക്കുന്നവയും നേര്ധാര പ്രയോജനപ്പെടുത്തുന്നവയും. പ്രത്യാവര്ത്തിധാരാമോട്ടോറുകളില് മുഖ്യമായവ പ്രേരണ മോട്ടോറുകളും സിങ്ക്രണമോട്ടോറുകളും ആണ്. ത്രീഫേസ് പരിപഥങ്ങളിലും ഏകഫേസ് പരിപഥങ്ങളിലും ഉപയോഗിക്കത്തക്കവിധം ചില്ലറ വ്യത്യാസങ്ങളോടെ ഇവ നിര്മിക്കപ്പെടുന്നു. കമ്യൂട്ടേറ്റര് ഉപയോഗിക്കുന്ന തരം മോട്ടോറുകളാണ് നേര്ധാരാ മോട്ടോറുകള്. പ്രത്യേകാവശ്യങ്ങള്ക്കായി പ്രത്യാവര്ത്തിധാരകൊണ്ട് പ്രവര്ത്തിക്കുന്ന ചില മോട്ടോറുകളും കമ്യൂട്ടേറ്ററുകളോടുകൂടി നിര്മിക്കാറുണ്ട്. ഷ്റാഗേ മോട്ടോര് ഇതിനൊരു ഉദാഹരണമാണ്. മുഖ്യവിഭാഗങ്ങളില്പ്പെടാത്ത ചില പ്രത്യേകതരം മോട്ടോറുകളുമുണ്ട്; ഇലക്ട്രിക് ക്ലോക്കുകള്, ടേപ്റെക്കാര്ഡറുകള് മുതലായവയില് ഉപയോഗിക്കുന്ന മോട്ടോറുകള് ഇത്തരത്തില്പ്പെട്ടവയാണ്. നേര്ധാരകൊണ്ടും പ്രത്യാവര്ത്തിധാരകൊണ്ടും പ്രവര്ത്തിക്കാന് കഴിവുള്ള മോട്ടോറും ഉണ്ട്, ഇവ "യൂണിവേഴ്സല് മോട്ടോര്' എന്ന പേരിലാണ് അറിയപ്പെടുന്നത്.
ഘടന. സിലിണ്ടര് ആകൃതിയില് ഒന്നിനുള്ളില് കറങ്ങിക്കൊണ്ടിരിക്കുന്ന മറ്റൊരു സിലിണ്ടര് എന്നപോലെയാണ് പൊതുവേ ഇലക്ട്രിക് മോട്ടോറുകളുടെ ഘടന. കറങ്ങാത്ത ഭാഗത്തെ സ്റ്റേറ്റര് എന്നും കറങ്ങുന്ന ഭാഗത്തെ റോട്ടര് എന്നും പൊതുവേ പറയാം. നേര്ധാരാ മോട്ടോറുകളില് റോട്ടറിനെ ആര്മേച്ചര് എന്നു വ്യവഹരിക്കുന്നു. കറങ്ങുന്ന ഭാഗങ്ങളെ താങ്ങുന്ന ഷാഫ്റ്റ്, അനായാസം കറങ്ങാനനുവദിക്കുന്ന ബെയ്റിങ്ങുകള്, യന്ത്രഭാഗങ്ങളെ തണുപ്പിക്കാന് കാറ്റോട്ടം ഉറപ്പുവരുത്തുന്ന ഫാനുകള്, വൈദ്യുതബന്ധം സ്ഥാപിക്കുവാനാവശ്യമായ ബ്രഷുകള് ഇവയും മോട്ടോറിന്റെ പൊതുഘടനയില്പ്പെടുന്നു.
കറങ്ങുന്ന ഭാഗമായ റോട്ടറില് ഒരു ഇരുമ്പുകാമ്പും അതില് ചാലുകള് വെട്ടി പ്രത്യേക രോധനപദാര്ഥങ്ങളില് പൊതിഞ്ഞുവച്ചിരിക്കുന്ന വാഹികളും ഉണ്ടായിരിക്കും. ഇതിനുപുറമേ എല്ലാ നേര്ധാരാ മോട്ടോറുകളിലും കമ്യൂട്ടേറ്റര് എന്ന ഭാഗവും കറങ്ങുന്ന ഭാഗത്തുണ്ടായിരിക്കും. നേര്ധാരാ മോട്ടോറില് കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്ന ഭാഗം സ്ഥിരവും ആര്മേച്ചര് കറങ്ങുന്നതുമായിരിക്കണം.
നേര്ധാരാമോട്ടോറിന് ഒന്നോ അധികമോ ജോടി ധ്രുവങ്ങളുണ്ടായിരിക്കും. ഇതിനുള്ള നിര്മിതികള് അകത്തേക്ക് തള്ളിനില്ക്കുന്നതായി കാണാം. ചില യന്ത്രങ്ങളില് പ്രധാന ധ്രുവങ്ങള്ക്കിടയില് ചില ചെറുധ്രുവങ്ങള് (interpols) കൂടി ഉണ്ടായിരിക്കും. പ്രധാന ധ്രുവങ്ങളുടെ കമ്പിച്ചുരുളുകള് ഒന്നിനുമീതെ ഒന്നായി തുടര്ച്ചയായി ചുറ്റുന്നു. ഓരോ ധ്രുവത്തിലും ഉള്ള ചുരുളുകളെ ശ്രേണിയായി ബന്ധിച്ചാണ് കാന്തമണ്ഡലപരിപഥം ഉണ്ടാക്കുന്നത്. വിപരീത ധ്രുവങ്ങള് ലഭിക്കാന് ഒന്നിടവിട്ട ധ്രുവങ്ങളില് ചുരുളുകളിലെ ധാര എതിര്ദിശയിലായിരിക്കും.
നേര്ധാരാ മോട്ടോറുകള്
പ്രവര്ത്തനതത്ത്വം. ഒരു കാന്തമണ്ഡലത്തില് സ്ഥിതിചെയ്യുന്നതും വൈദ്യുതധാര ഉള്ളതുമായ ഒരു വാഹിയിന്മേല് ഒരു യാന്ത്രികബലം പ്രവര്ത്തിച്ചുകൊണ്ടിരിക്കും. വാഹിക്ക് ചലനസ്വാതന്ത്ര്യമുണ്ടെങ്കില് അത് ചലിക്കുന്നു. "ഇടംകൈ നിയമം' അനുസരിച്ച് ധാരയുടെ ദിശ, കാന്തമണ്ഡലദിശ, ബലം പ്രവര്ത്തിക്കുന്ന ദിശ ഇവ മൂന്നും അന്യോന്യം ലംബമായിരിക്കും.
രണ്ടു ധ്രുവങ്ങളും രണ്ടുവാഹികള് ചേര്ത്തുണ്ടാക്കിയ ഒരു ചുരുളും മാത്രം അടങ്ങിയതാണ് മോട്ടോര് എന്നു സങ്കല്പിക്കുക. ഉത്തര-ദക്ഷിണ (N-S) മുഖ്യധ്രുവങ്ങളാണ്. ഇവ ആവശ്യമായ കാന്തമണ്ഡലം സൃഷ്ടിക്കുന്നു. ആര്മേച്ചറില് രണ്ടു ചാലുകളും അവയില് ഓരോന്നിലും ഓരോ പകുതി വരത്തക്കവണ്ണം ചുരുളും ഏര്പ്പെടുത്തിയിരിക്കുന്നു. ഒരു ചുരുള്പാതി ഉത്തരധ്രുവത്തിനു കീഴില് വരുമ്പോള് മറ്റേത് ദക്ഷിണധ്രുവത്തിനു നേരെ കീഴില് വരും. ഈ ചുരുളിനെതിരെ ഒരു വിദ്യുത്ചാലകബലം പ്രയോഗിക്കുമ്പോള് ചുരുളിലൂടെ വൈദ്യുതി പ്രവഹിക്കുന്നു. ഒരേ ചുരുളിന്റെ രണ്ടുഭാഗങ്ങളാകയാല് ഒന്നിലൂടെ പ്രവേശിക്കുന്ന ധാര മറ്റേതിലൂടെ പുറത്തുകടക്കുന്നു. എന്നാല് അവ രണ്ടും സ്ഥിതിചെയ്യുന്നത് എതിര്ധ്രുവങ്ങള്ക്കിടയിലാണ്. മാത്രമല്ല, രണ്ടു ചുരുള്പാതിയിലൂടെയും ഒരേ ധാര ഒഴുകുന്നു. തുല്യശക്തിയുള്ള ധ്രുവങ്ങള്ക്കിടയിലാണ് രണ്ടും. മോട്ടോര് ഉത്പാദിപ്പിക്കുന്ന ബലം അതിനാല് ഒരു ബലയുഗ്മമായി പ്രവര്ത്തിക്കുന്നു. ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാന് കഴിയും. ഒരു ബലയുഗ്മത്തിന് വസ്തുവിനെ തിരിക്കാനുള്ള ശേഷിയുടെ അളവാണ് "ടോര്ക്ക്' എന്ന് അറിയപ്പെടുന്നത്. ബലയുഗ്മത്തിലെ ബലങ്ങള് തമ്മിലുള്ള അകലവും അതിലൊരുബലവും ഗുണിച്ചു കിട്ടുന്നതാണ് ടോര്ക്ക് മൂല്യം. ഷാഫ്റ്റിനെ ചലിപ്പിക്കുന്നത് ഈ ടോര്ക്ക് ആണ്. ആര്മേച്ചറിനു കറങ്ങാന് സ്വാതന്ത്ര്യമുള്ളതുകൊണ്ട് ചിത്രം 2-ല് കാണിച്ചിരിക്കുന്നവിധം ആര്മേച്ചര് പ്രദക്ഷിണദിശയില് കറങ്ങിത്തുടങ്ങും. പക്ഷേ, ഒരു ചുരുള് മാത്രമേ ഉള്ളൂ എങ്കില് അതു നീങ്ങുന്നതിനനുസരിച്ച് ടോര്ക്കിന്റെ അളവും വ്യത്യാസപ്പെടുന്നു. ധ്രുവമധ്യത്തിലായിരിക്കുമ്പോള് ഏറ്റവും കൂടിയ ടോര്ക്കും രണ്ടു ധ്രുവങ്ങള്ക്കുനേരെ നടുവിലായിരിക്കുമ്പോള് ടോര്ക്ക് ഒട്ടും ഇല്ലാത്ത അവസ്ഥയും അനുഭവപ്പെടുന്നു. പ്രായോഗിക മോട്ടോറുകളില് ഒന്നിലധികം ചുരുളുകള് ഉള്ളതിനാല് ഏതുസമയത്തും കുറേ ചുരുളുകളുടെ ടോര്ക്ക് തുടര്ച്ചയായി ലഭ്യമായിക്കൊണ്ടിരിക്കും.
ഓരോ ചുരുള്പ്പാതിയിലും ഉത്പാദിപ്പിക്കുന്ന ടോര്ക്കിന്റെ ആകെത്തുകയാണ് മോട്ടോറിന്റെ ആകെ ടോര്ക്ക്. ഭാരത്തിന്റെ ടോര്ക്ക് മാറിക്കൊണ്ടിരിക്കാം. തന്മൂലം സ്ഥായിയായ പ്രവര്ത്തനം ഉറപ്പുവരുത്താന് ഉത്പാദിപ്പിക്കപ്പെടുന്ന ടോര്ക്കും ഭാരത്തിനനുസരിച്ച് മാറിക്കൊണ്ടിരിക്കണം. നേര്ധാരാ മോട്ടോറുകളില് ആര്മേച്ചര് ചുരുളുകളില് ജനിക്കുന്ന എതിര് വിദ്യുത്ചാലകബലമാണ് ഭാരത്തിന് അനുഗുണമായി ടോര്ക്കിനെ നിയന്ത്രിക്കുന്നത്. മോട്ടോറിന്റെ വേഗമോ കാന്തമണ്ഡലതീവ്രതയോ മാറ്റുന്നതുവഴി എതിര് വിദ്യുത്ചാലകബലത്തെ നിയന്ത്രിക്കാം. കാന്തമണ്ഡലം സ്ഥിരമാണെങ്കില് വേഗത്തെ സ്വയം ക്രമീകരിച്ചുകൊണ്ട് മോട്ടോര് സന്തുലിതാവസ്ഥ കൈവരിക്കുന്നു. ഭാരം കൂടുമ്പോള് വേഗം കുറയുകയാവും അത്തരം മോട്ടോറുകളില് സംഭവിക്കുക.
ആര്മേച്ചറിനെ അപേക്ഷിച്ച് കാന്തച്ചുരുള് ഘടിപ്പിക്കുന്നവിധം ആസ്പദമാക്കി നേര്ധാരാ മോട്ടോറുകളെ ശ്രേണി (series), സമാന്തരം (shunt), സംയുക്തം (compound) എന്നിങ്ങനെ മൂന്നായി തരംതിരിക്കാം. സംയുക്തസമ്പ്രദായത്തില് ശ്രണിയിലും സമാന്തരത്തിലുമുള്ള ഓരോ മണ്ഡലച്ചുരുളുകള് ഉണ്ടാവും. ഇവയുടെ മണ്ഡലങ്ങള് പരസ്പരം ബലപ്പെടുത്തുകയോ ക്ഷയിപ്പിക്കുകയോ ആവാം. അതനുസരിച്ച് മോട്ടോറിന്റെ പ്രവര്ത്തനസ്വഭാവത്തിലും വ്യത്യാസങ്ങള് വരുന്നു.
സ്റ്റാര്ട്ടര്. നേര്ധാരാമോട്ടോറുകളെ ഒരു സ്റ്റാര്ട്ടറിന്റെ അഭാവത്തില് സ്റ്റാര്ട്ടാക്കാവുന്നതല്ല. എതിര് വിദ്യുത്ചാലകബലവും വോള്ട്ടതയും തമ്മിലുള്ള വ്യത്യാസത്തിന്റെ അനുപാതത്തിലാണ് ആര്മേച്ചറിലേക്കുള്ള വൈദ്യുത പ്രവാഹം. സ്റ്റാര്ട്ടാക്കുമ്പോള്, യന്ത്രം പൂര്ണവേഗം ആര്ജിച്ചിട്ടില്ലാത്തതിനാല് എതിര്വിദ്യുത്ചാലകബലം വളരെക്കുറവോ പൂജ്യമോ ആയിരിക്കും. വലിയൊരു വിദ്യുത്ധാര മോട്ടോറിലേക്കൊഴുകുക എന്നതാവും ഇതിന്റെ ഫലം. ഇതു തടയാന് പരിപഥത്തില് ഒരു പ്രതിരോധം ക്രമീകരിച്ച് പടിപടിയായി അത് ഒഴിവാക്കുകയും ചെയ്യേണ്ടതാണ്. ഫേസ്പ്ലേറ്റ് സ്റ്റാര്ട്ടര് ആണ് ഇതിനായി പൊതുവേ ഉപയോഗിക്കുന്നത്. വൈദ്യുതി നിലയ്ക്കുകയും അധികധാര ഒഴുകാനിടയാവുകയും ചെയ്യുന്ന സന്ദര്ഭങ്ങളില് സ്റ്റാര്ട്ടര്പിടി ഉടന്തന്നെ "ഓഫ്' നിലയിലേക്ക് സ്വയം തിരിച്ചുപോവാനുള്ള റിലേസംവിധാനങ്ങള് സ്റ്റാര്ട്ടറില് ഉണ്ടായിരിക്കും. ഇങ്ങനെ ചെയ്തില്ലെങ്കില് മോട്ടോര് കത്തിപ്പോവാനിടയാകും. വൈദ്യുതി നിലച്ച് വീണ്ടും വരുമ്പോള് മുഴുവന് വോള്ട്ടതയും പൊടുന്നനെ മോട്ടോറില് ഏല്പിക്കുന്നത് വിനാശഹേതുവാകാം (ചിത്രം 4).
ഉപയോഗങ്ങള്. ഗണ്യമായ വേഗവ്യത്യാസം എളുപ്പത്തില് ലഭിക്കേണ്ട അവസരങ്ങളിലും ഡെലിവറി വാനുകള്, പ്ലാറ്റ്ഫോം ട്രക്കുകള്, ഇലക്ട്രിക് ട്രെയിനുകള്, നിയന്ത്രണസംവിധാനങ്ങള് എന്നിവയിലും നേര്ധാരാ മോട്ടോറുകള് ഉപയോഗിക്കുന്നു. പ്രവര്ത്തനം ആരംഭിക്കുന്ന സമയത്ത് കൂടുതല് ഭാരം താങ്ങാനുള്ള ശ്രേണീമോട്ടോറുകള് ഇലക്ട്രിക് ട്രെയിനുകളിലും മറ്റും വളരെയധികം ഉപയോഗപ്രദമാണ്. ഏതാണ്ട് സ്ഥിരവേഗം ലഭ്യമാവുന്ന ഷണ്ട്സ്വഭാവം ഒട്ടൊക്കെ ഉള്ളതിനാല് ചില പ്രവര്ത്തനമേഖലകളില് ദൃഢവും ചെലവുകുറഞ്ഞതുമായ പ്രേരണമോട്ടോറുകള് നേര്ധാരാ മോട്ടോറുകളെ പിന്തള്ളിവരികയാണ്.
പ്രത്യേകതരം മോട്ടോറുകള്. പ്രത്യാവര്ത്തിധാര ഉപയോഗിച്ചു പ്രവര്ത്തിക്കുന്ന ചില പ്രത്ര്യേക ഇനം മോട്ടോറുകളും ഉണ്ട്.
i. മണ്ഡലച്ചുരുളില്ലാത്ത സിങ്ക്രണനമോട്ടോറുകള്, ഹിസ്റ്ററെസിസ് മോട്ടോറുകള്. ചെറിയ ചില സിങ്ക്രണനമോട്ടോറുകളില് സിങ്ക്രണനപ്രവര്ത്തനത്തിന് അവശ്യം വേണ്ടുന്ന നേര്ധാര ഒഴിവാക്കാന് കഴിഞ്ഞിട്ടുണ്ട്. സ്ഥിരകാന്തം ഉണ്ടാക്കാനുപയോഗിക്കുന്നതരം ഉരുക്കുകാമ്പുകൊണ്ട് ധ്രുവഭാഗം നിര്മിക്കുന്നു. സ്ഥിരമായ ഒരു ശിഷ്ടകാന്തമണ്ഡലം ഈ കാന്തഭാഗത്തിലുണ്ടാവുന്ന വിധമാണ് നിര്മാണസംവിധാനം. ഹിസ്റ്ററെസിസ് മോട്ടോറുകളില് വലിയ ഹിസ്റ്ററെസിസ് വലയം വിശേഷകമായുള്ള ഉരുക്കുതകിടുകള് അടുക്കിയാണ് റോട്ടര് നിര്മിക്കുന്നത്. ചുഴിയന്ധാര, ഹിസ്റ്റെറെസിസ് നഷ്ടം എന്നിവകൊണ്ടുണ്ടാകുന്ന ശക്തിയാല് റോട്ടര് താനേ കറങ്ങിത്തുടങ്ങുന്നു. സിങ്ക്രണനവേഗം ഏതാണ്ടെത്തുമ്പോള് കറങ്ങുന്ന കാന്തമണ്ഡലവുമായി ഇത് സ്വയം ബന്ധിതമാവുന്നു. തുടര്ന്ന് സിങ്ക്രണനവേഗത്തില് ഓടിക്കൊള്ളും. നേര്ധാരാ സപ്ലൈ ഒഴിവാക്കാമെന്നത് വലിയൊരു സൗകര്യമാണ്. നിര്ദിഷ്ടഭാരത്തിന് ഉത്പാദിപ്പിക്കാവുന്ന വിദ്യുത്ശക്തി, നേര്ധാര കൊണ്ടുള്ള കാന്തമണ്ഡലത്തോടു കൂടിയ സിങ്ക്രണനമോട്ടോറുകളെക്കാള് കുറവാണ്. വിമാനങ്ങളിലും കപ്പലുകളിലും മറ്റും ദിശാനിയന്ത്രണസംവിധാനങ്ങള് ഉണ്ടാക്കാനും റെക്കാര്ഡ് പ്ലേയറുകള്, ടേപ്പ്റെക്കാര്ഡറുകള്, ക്ലോക്കുകള് തുടങ്ങി വിദ്യുച്ഛക്തി അധികം ആവശ്യമില്ലാത്തതും ക്ഷമതയ്ക്ക് പ്രസക്തി ഇല്ലാത്തതുമായ ഉപയോഗങ്ങള്ക്കും ഇത്തരം മോട്ടോറുകള് അത്യുത്തമമാണ്. 200 വാട്ട് വരെ ശക്തിയുള്ള ഇത്തരം മോട്ടോറുകളുടെ ക്ഷമത 80 ശതമാനം വരെ ഉയര്ന്നിരിക്കും.
ii. റിലക്റ്റന്സ് മോട്ടോറുകള് (Reluctance Motors). ഇവയില് റോട്ടര് ചുരുളുകള് ഇല്ലെന്നു മാത്രമല്ല, റോട്ടറില് വെറുതെ പൊഴികള് ഇട്ടിരിക്കുകയും ചെയ്യും. നിര്മിക്കാന് എളുപ്പമാണ്. കൂടുതല് ഭാരം വഹിക്കാനുള്ള ശേഷിയും ഇത്തരം മോട്ടോറുകള്ക്കുണ്ട്. സാധാരണ നിലയില്, കൂടിയ ശക്തിനിലവാരം ഒരു കുതിരശക്തിയാണ്. സ്വയമേവ സിങ്ക്രണനവേഗത്തിലെത്തുന്നു. വല്ല കാരണവശാലും റോട്ടര് കറങ്ങുന്ന കാന്തമണ്ഡലത്തിനു പിറകിലായിപ്പോവുകയാണെങ്കില് അതിനര്ഥം വായുവിടവില് സംഭരിച്ചിരിക്കുന്ന ശരാശരി കാന്ത-ഊര്ജത്തിന് കുറവു വന്നിരിക്കുന്നുവെന്നാണ്. ഇത് സ്വാഭാവികമായും കൂടുതല് ടോര്ക്ക് ഉത്പാദിപ്പിക്കുന്നു. ഇക്കാരണത്താല് റോട്ടര് വീണ്ടും സിങ്ക്രണനവേഗം ആര്ജിക്കുന്നു.
ഇലക്ട്രിക് ക്ലോക്കുകള്. ഇതിന് ഒറ്റഫേസ് മോട്ടോറുകള് ഉപയോഗിക്കുന്നു. രണ്ടു ധ്രുവങ്ങളുള്ള ഒരു കറങ്ങുന്ന കാന്തമണ്ഡലം ലഭ്യമാക്കാന് ഷേഡഡ്പോള് നിര്മാണരീതി ഉപയോഗിക്കുന്നു. ഒന്നിലധികം സ്റ്റേറ്റര് ചുരുളുകള് ഏര്പ്പെടുത്തുകയും അവ മുഖ്യചുരുളില് നിന്നു കാന്തികമായി അകലത്താക്കിവയ്ക്കുകയും ചുരുളുകളെ ഷോര്ട്ട് സര്ക്യൂട്ട് ആക്കുകയും ചെയ്യുന്നു. സീല് ചെയ്ത ഒരു ലോഹപ്പെട്ടിക്കകത്ത്, പ്രത്യേക കാന്തികഗുണങ്ങളുള്ള ദൃഢീകരിച്ച കുറേ ഉരുക്കുതകിടുകള് ക്രമീകരിച്ചിരിക്കും. കറങ്ങുന്ന കാന്തികമണ്ഡലം തകിടുകളുമായി പ്രതിപ്രവര്ത്തിച്ച് ഉണ്ടാവുന്ന ചുഴി ധാര കാരണം മോട്ടോര് സ്വയം സ്റ്റാര്ട്ടാകുന്നു. മിനിട്ടില് 3000-3600 ഭ്രമണങ്ങള് എന്നതാണ് സാധാരണ വേഗം. സീല് ചെയ്യപ്പെട്ട ഒരു ഗിയര്സംവിധാനം മോട്ടോറിന്റെ ഭ്രമണ വേഗതയെ മിനിറ്റില് ഒരു കറക്കം എന്ന തോതില് ക്രമീകരിക്കുന്നു. ഇത്തരം മോട്ടോറിന്റെ പ്രവര്ത്തനക്ഷമത ഒരു ശതമാനത്തില് കുറവാണെങ്കിലും നിര്മാണച്ചെലവും പ്രവര്ത്തനച്ചെലവും തരതമ്യേന കുറവാണ്. സിങ്ക്രണനവേഗത്തില് ഓടുകയെന്നതു മാത്രമാണ് ലക്ഷ്യം. അതുകൊണ്ട് ഈ ക്ഷമത തികച്ചും സ്വീകാര്യമാണ്. ഗൃഹങ്ങളില് ഉപയോഗിക്കുന്ന സാധാരണ പ്ലഗ്ഗ്പോയിന്റ് വഴി വൈദ്യുതി ലഭ്യമാക്കാനും സാധിക്കും.
iii. രേഖീയമോട്ടോറുകള് (linear motors).ഒരു പ്രേരണ മോട്ടോറിന്റെ പരിച്ഛേദം നിവര്ത്തിവച്ചാല് എങ്ങനെ ഇരിക്കുമോ അതാവും രേഖീയ മോട്ടോറിന്റെ രൂപം. ഉന്നത വേഗം ആവശ്യമായ ട്രെയിനുകള്ക്കും മറ്റും രേഖീയ മോട്ടോര് ഉപകരിക്കും. ചാലകപദാര്ഥങ്ങള്, പ്രത്യേകിച്ച് റേഡിയോആക്റ്റീവതയുള്ളവ പമ്പുചെയ്യാന് രേഖീയമോട്ടോര് പമ്പുകള് സുരക്ഷിതമായി ഉപയോഗിക്കാം. ഇതിലെ റോട്ടര്കുഴലിലെ അഥവാ സ്ക്രൂ കണ്വേയറിലെ ചാലകദ്രാവകം തന്നെയായിരിക്കും റോട്ടര് ആയി പ്രവര്ത്തിക്കുക. മാറിമാറി വരുന്ന ദ്രവപാളികള് തുടര്ച്ചയായി റോട്ടര് ആയി പ്രവര്ത്തിക്കുന്നു.
സ്റ്റെപ്പര് മോട്ടോര്. നാം കൊടുക്കുന്ന വൈദ്യുത പള്സ് അനുസരിച്ച് ഒരു നിശ്ചിത കോണില് തിരിയാന് കഴിയുന്ന മോട്ടോറുകളാണിവ. സ്റ്റെപ്പര് മോട്ടോറിന്റെ വേഗത വൈദ്യുത പള്സിന്റെ ആവൃത്തിക്കും, മോട്ടോര് എത്ര കോണ് അളവില് തിരിയുന്നു എന്നത് പള്സിന്റെ ദൈര്ഘ്യത്തിനും ആനുപാതികമാണ്. ഈ മോട്ടോറിന്റെ ഒരു കറക്കം നിശ്ചിത എണ്ണം പടികള് അഥവാ സ്റ്റെപ്പിലാണ് നിര്വഹിക്കുന്നത്. ഉദാ. ഒരു കറക്കം 200 അല്ലെങ്കില് 400 പടികളായി (steps) പൂര്ത്തിയാക്കുന്നു. തന്മൂലം മോട്ടോറിന്റെ ഷാഫ്റ്റ് മേല്പറഞ്ഞ അളവുകളില് യഥാക്രമം 1.8° അഥവാ 0.9° തിരിക്കാവുന്നതാണ്. ഏതെങ്കിലും ഒരുപകരണത്തെ ഒരു നിശ്ചിത കോണില് അളന്നു കറക്കേണ്ടുന്ന സന്ദര്ഭത്തില് സ്റ്റെപ്പര് മോട്ടോര് ഉപയോഗിക്കുന്നു. ഇവ കൂടാതെ തീരെ ചെറിയ കോണുകളില് തിരിക്കാന് കഴിയുന്ന സ്റ്റെപ്പര് മോട്ടോറുകളുണ്ട്. വേരിയബിള് റിലക്ടന്സ്, സ്ഥിര കാന്തരൂപം, സങ്കരരൂപം എന്നിങ്ങനെ മൂന്ന് തരത്തിലുള്ള സ്റ്റെപ്പര് മോട്ടോറുകളുണ്ട്. കംപ്യൂട്ടറിലെ ഹാര്ഡ് ഡിസ്ക് ഡ്രൈവ്, പ്രിന്റര്, പ്ലോട്ടര്, ഫാക്സ് മെഷീന്, മെഡിക്കല് ഉപകരണങ്ങള്, റോബോട്ടുകള് എന്നിവയില് സ്റ്റെപ്പര് മോട്ടോര് ഉപയോഗിക്കുന്നു. ഒരു വൈദ്യുത പള്സ് കൊടുക്കുമ്പോള് ഒരു പടി (step) കറങ്ങുന്നു.
(വി.കെ. ദാമോദരന്, ഡോ. ബി. പ്രേംലെറ്റ്; സ.പ.)