This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

ഉച്ചഭാഷിണി

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(Loudspeaker)
(Loudspeaker)
 
(ഇടക്കുള്ള 3 പതിപ്പുകളിലെ മാറ്റങ്ങള്‍ ഇവിടെ കാണിക്കുന്നില്ല.)
വരി 5: വരി 5:
== Loudspeaker ==
== Loudspeaker ==
-
ശ്രാതാക്കള്‍ക്ക്‌ വ്യക്തമായി കേള്‍ക്കാന്‍ കഴിയത്തക്കവിധം ശബ്‌ദത്തെ ഉച്ചത്തിലാക്കുന്ന വൈദ്യുതോപകരണം. പ്രയോഗിക്കപ്പെടുന്ന വൈദ്യുതസിഗ്നലിന്‌ അനുസരണമായി ഈ ഉപകരണത്തിലൂടെ ശബ്‌ദം ഒരു മുറിയിലേക്കോ തുറസ്സായ സ്ഥലത്തേക്കോ കൂടുതൽ ഉച്ചത്തിൽ പ്രസരിപ്പിക്കുന്നു. ഉച്ചഭാഷിണിയുടെ "മോട്ടോർ' എന്ന ഭാഗം വൈദ്യുതസിഗ്നലിനെ, അതിനോടുകൂടി ഘടിപ്പിച്ചിട്ടുള്ള ഒരു ഡയഫ്രത്തിന്റെ യഥാതഥമായ ചലനത്തിൽക്കൂടി, അന്തരീക്ഷവായുവിലേക്ക്‌ പ്രസരിപ്പിക്കുന്നു. ഈ ചലനങ്ങള്‍ ഡയഫ്രത്തിന്റെ മുമ്പിലും പിറകിലുമുള്ള വായുവിനെ മുമ്പോട്ടും പിമ്പോട്ടും ചലിപ്പിക്കുകയും തത്‌ഫലമായി വൈദ്യുതോർജത്തിനു സമാനമായ ശബ്‌ദം ഉണ്ടാകുകയും ചെയ്യുന്നു.
+
ശ്രാതാക്കള്‍ക്ക്‌ വ്യക്തമായി കേള്‍ക്കാന്‍ കഴിയത്തക്കവിധം ശബ്‌ദത്തെ ഉച്ചത്തിലാക്കുന്ന വൈദ്യുതോപകരണം. പ്രയോഗിക്കപ്പെടുന്ന വൈദ്യുതസിഗ്നലിന്‌ അനുസരണമായി ഈ ഉപകരണത്തിലൂടെ ശബ്‌ദം ഒരു മുറിയിലേക്കോ തുറസ്സായ സ്ഥലത്തേക്കോ കൂടുതല്‍ ഉച്ചത്തില്‍ പ്രസരിപ്പിക്കുന്നു. ഉച്ചഭാഷിണിയുടെ "മോട്ടോര്‍' എന്ന ഭാഗം വൈദ്യുതസിഗ്നലിനെ, അതിനോടുകൂടി ഘടിപ്പിച്ചിട്ടുള്ള ഒരു ഡയഫ്രത്തിന്റെ യഥാതഥമായ ചലനത്തില്‍ക്കൂടി, അന്തരീക്ഷവായുവിലേക്ക്‌ പ്രസരിപ്പിക്കുന്നു. ഈ ചലനങ്ങള്‍ ഡയഫ്രത്തിന്റെ മുമ്പിലും പിറകിലുമുള്ള വായുവിനെ മുമ്പോട്ടും പിമ്പോട്ടും ചലിപ്പിക്കുകയും തത്‌ഫലമായി വൈദ്യുതോര്‍ജത്തിനു സമാനമായ ശബ്‌ദം ഉണ്ടാകുകയും ചെയ്യുന്നു.
-
ചരിത്രം. 1861-ൽ ജർമന്‍കാരനായ ഫിലിപ്പ്‌ റൈസെ മനുഷ്യശബ്‌ദം വൈദ്യുതി ഉപയോഗിച്ച്‌ പ്രഷണം ചെയ്‌തതോടുകൂടിയാണ്‌ ഉച്ചഭാഷിണിയുടെ ചരിത്രം തുടങ്ങുന്നത്‌. 1876-ഗ്രഹാം ബെൽ ആദ്യത്തെ ടെലിഫോണ്‍സ്വീകരണി കണ്ടുപിടിച്ചു. 1878-ൽ വെയ്‌നർ വി. സീമെന്‍സ്‌ എന്ന ജർമന്‍ശാസ്‌ത്രജ്ഞന്‍ ഗതികവൈദ്യുത ഉച്ചഭാഷിണി (electro-dynamic loudspeaker) നിർമിച്ചു. ഇലക്‌ട്രാണികവാൽവുകള്‍ കണ്ടുപിടിക്കുന്നതിനു മുമ്പുള്ള കാലങ്ങളിൽ ഉച്ചത്തിൽ ശബ്‌ദം ലഭിക്കുന്നതിന്‌ ഉച്ചഭാഷിണികളോടുകൂടി ഹോണു(horn)കളും ഘടിപ്പിക്കുക പതിവായിരുന്നു. 1888-ൽ ഫെർഡിനന്‍ഡ്‌ ബ്രൗണ്‍ "തെർമോഫോണ്‍' എന്ന ഉപകരണം കണ്ടുപിടിച്ചു. തുടർന്ന്‌ 1922-ൽ എംഗൽ വോഗ്‌ത്‌, മസോള്‍ എന്നിവർ ചേർന്ന്‌ ചലച്ചിത്രങ്ങള്‍ക്ക്‌ ശബ്‌ദം കൊടുക്കുന്നതിന്‌ സ്റ്റാറ്റോഫോണ്‍ എന്ന പേരിൽ സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി(electrostatic loudspeaker)ഉപയോഗിച്ചു. 1924-ൽ റീഗെർ, ഹോണ്‍ ഉപയോഗിക്കാത്ത ആദ്യത്തെ ഉച്ചഭാഷിണി നിർമിച്ചു. ഗതികവൈദ്യുത തത്ത്വത്തിൽ പ്രവർത്തിച്ചിരുന്ന ഈ ഉപകരണം ബ്ലാത്താലർ എന്ന പേരിലറിയപ്പെട്ടു. ഈ കാലഘട്ടത്തിൽത്തന്നെ ചാള്‍സ്‌ റൈസ്‌, എഡ്വേർഡ്‌ കെല്ലോഗ്‌ എന്നീ അമേരിക്കക്കാർ ചേർന്ന്‌ ഇന്നു പ്രചാരത്തിലുള്ള ഗതികവൈദ്യുതകോണ്‍ ഉച്ചഭാഷിണി (electro-dynamic cone loudspeaker) കണ്ടുപിടിച്ചു.
+
ചരിത്രം. 1861-ല്‍ ജര്‍മന്‍കാരനായ ഫിലിപ്പ്‌ റൈസെ മനുഷ്യശബ്‌ദം വൈദ്യുതി ഉപയോഗിച്ച്‌ പ്രഷണം ചെയ്‌തതോടുകൂടിയാണ്‌ ഉച്ചഭാഷിണിയുടെ ചരിത്രം തുടങ്ങുന്നത്‌. 1876-ല്‍ ഗ്രഹാം ബെല്‍ ആദ്യത്തെ ടെലിഫോണ്‍സ്വീകരണി കണ്ടുപിടിച്ചു. 1878-ല്‍ വെയ്‌നര്‍ വി. സീമെന്‍സ്‌ എന്ന ജര്‍മന്‍ശാസ്‌ത്രജ്ഞന്‍ ഗതികവൈദ്യുത ഉച്ചഭാഷിണി (electro-dynamic loudspeaker) നിര്‍മിച്ചു. ഇലക്‌ട്രാണികവാല്‍വുകള്‍ കണ്ടുപിടിക്കുന്നതിനു മുമ്പുള്ള കാലങ്ങളില്‍ ഉച്ചത്തില്‍ ശബ്‌ദം ലഭിക്കുന്നതിന്‌ ഉച്ചഭാഷിണികളോടുകൂടി ഹോണു(horn)കളും ഘടിപ്പിക്കുക പതിവായിരുന്നു. 1888-ല്‍ ഫെര്‍ഡിനന്‍ഡ്‌ ബ്രൗണ്‍ "തെര്‍മോഫോണ്‍' എന്ന ഉപകരണം കണ്ടുപിടിച്ചു. തുടര്‍ന്ന്‌ 1922-ല്‍ എംഗല്‍ വോഗ്‌ത്‌, മസോള്‍ എന്നിവര്‍ ചേര്‍ന്ന്‌ ചലച്ചിത്രങ്ങള്‍ക്ക്‌ ശബ്‌ദം കൊടുക്കുന്നതിന്‌ സ്റ്റാറ്റോഫോണ്‍ എന്ന പേരില്‍ സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി(electrostatic loudspeaker)ഉപയോഗിച്ചു. 1924-ല്‍ റീഗെര്‍, ഹോണ്‍ ഉപയോഗിക്കാത്ത ആദ്യത്തെ ഉച്ചഭാഷിണി നിര്‍മിച്ചു. ഗതികവൈദ്യുത തത്ത്വത്തില്‍ പ്രവര്‍ത്തിച്ചിരുന്ന ഈ ഉപകരണം ബ്ലാത്താലര്‍ എന്ന പേരിലറിയപ്പെട്ടു. ഈ കാലഘട്ടത്തില്‍ത്തന്നെ ചാള്‍സ്‌ റൈസ്‌, എഡ്വേര്‍ഡ്‌ കെല്ലോഗ്‌ എന്നീ അമേരിക്കക്കാര്‍ ചേര്‍ന്ന്‌ ഇന്നു പ്രചാരത്തിലുള്ള ഗതികവൈദ്യുതകോണ്‍ ഉച്ചഭാഷിണി (electro-dynamic cone loudspeaker) കണ്ടുപിടിച്ചു.
-
വിവിധയിനം ഉച്ചഭാഷിണികള്‍. ഉച്ചഭാഷിണികളെ പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി (direct radiator L.S.) ഹോണ്‍ ഉച്ചഭാഷിണി(horn L.S.) അയോണിക ഉച്ചഭാഷിണി (ionic L.S.) എന്നിങ്ങനെ മൂന്നായി തരംതിരിക്കാമെങ്കിലും ആദ്യത്തെ രണ്ടിനങ്ങളാണ്‌ കൂടുതൽ പ്രചാരത്തിലുള്ളത്‌.
+
വിവിധയിനം ഉച്ചഭാഷിണികള്‍. ഉച്ചഭാഷിണികളെ പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി (direct radiator L.S.) ഹോണ്‍ ഉച്ചഭാഷിണി(horn L.S.) അയോണിക ഉച്ചഭാഷിണി (ionic L.S.) എന്നിങ്ങനെ മൂന്നായി തരംതിരിക്കാമെങ്കിലും ആദ്യത്തെ രണ്ടിനങ്ങളാണ്‌ കൂടുതല്‍ പ്രചാരത്തിലുള്ളത്‌.
1. പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി. ഡയഫ്രമോ കോണോ ശബ്‌ദത്തെ നേരിട്ട്‌ അന്തരീക്ഷത്തിലേക്ക്‌ പ്രസരണം നടത്തുന്ന തരം ഉച്ചഭാഷിണിയാണ്‌ ഇത്‌.
1. പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി. ഡയഫ്രമോ കോണോ ശബ്‌ദത്തെ നേരിട്ട്‌ അന്തരീക്ഷത്തിലേക്ക്‌ പ്രസരണം നടത്തുന്ന തരം ഉച്ചഭാഷിണിയാണ്‌ ഇത്‌.
-
2. ഗതികവൈദ്യുത ഉച്ചഭാഷിണി. ഉച്ചഭാഷിണിയുടെ മോട്ടോർ ശക്തിയേറിയ ഒരു കാന്തം ആണ്‌. അത്‌ സ്ഥിരകാന്തമോ വൈദ്യുതകാന്തമോ ആകാം. ഇതിന്റെ കാന്തികമണ്ഡലത്തിലെ വൃത്താകൃതിയിലുള്ള ഒരു വായുവിടവിൽ (circular air-gap) സ്വതന്ത്രമായി ചലിക്കാനുള്ള സൗകര്യത്തോടുകൂടി ഒരു നാദച്ചുരുള്‍ (voice coil)  ഒരു പേപ്പർ കോണുമായി ഘടിപ്പിച്ചിരിക്കുന്നു.
+
2. ഗതികവൈദ്യുത ഉച്ചഭാഷിണി. ഉച്ചഭാഷിണിയുടെ മോട്ടോര്‍ ശക്തിയേറിയ ഒരു കാന്തം ആണ്‌. അത്‌ സ്ഥിരകാന്തമോ വൈദ്യുതകാന്തമോ ആകാം. ഇതിന്റെ കാന്തികമണ്ഡലത്തിലെ വൃത്താകൃതിയിലുള്ള ഒരു വായുവിടവില്‍ (circular air-gap) സ്വതന്ത്രമായി ചലിക്കാനുള്ള സൗകര്യത്തോടുകൂടി ഒരു നാദച്ചുരുള്‍ (voice coil)  ഒരു പേപ്പര്‍ കോണുമായി ഘടിപ്പിച്ചിരിക്കുന്നു.
-
ശബ്‌ദാവൃത്തി(audio frequency)യിലുള്ള വൈദ്യുതി നാദച്ചുരുളിൽക്കൂടി കടന്നുപോകുമ്പോള്‍ ചലിക്കുന്ന ഒരു കാന്തികമണ്ഡലം അതിനു ചുറ്റും സൃഷ്‌ടിക്കപ്പെടുന്നു. ചലിക്കുന്ന ഈ കാന്തികമണ്ഡലം ആദ്യത്തെ സ്ഥിരകാന്തിക മണ്ഡലവുമായി പ്രതിപ്രവർത്തിച്ച്‌ നാദച്ചുരുളിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനം പേപ്പർകോണ്‍ മുഖേന വായുവിലേക്ക്‌ ശബ്‌ദതരംഗങ്ങളായി പ്രഷണം ചെയ്യപ്പെടുന്നു.
+
ശബ്‌ദാവൃത്തി(audio frequency)യിലുള്ള വൈദ്യുതി നാദച്ചുരുളില്‍ക്കൂടി കടന്നുപോകുമ്പോള്‍ ചലിക്കുന്ന ഒരു കാന്തികമണ്ഡലം അതിനു ചുറ്റും സൃഷ്‌ടിക്കപ്പെടുന്നു. ചലിക്കുന്ന ഈ കാന്തികമണ്ഡലം ആദ്യത്തെ സ്ഥിരകാന്തിക മണ്ഡലവുമായി പ്രതിപ്രവര്‍ത്തിച്ച്‌ നാദച്ചുരുളിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനം പേപ്പര്‍കോണ്‍ മുഖേന വായുവിലേക്ക്‌ ശബ്‌ദതരംഗങ്ങളായി പ്രഷണം ചെയ്യപ്പെടുന്നു.
-
[[ചിത്രം:Vol5p433_Uchabhashini-1.jpg|thumb|]]
+
-
പ്രധാനമായി രണ്ടുവിധത്തിലുള്ള ഗതികവൈദ്യുത ഉച്ചഭാഷിണികള്‍ ഉണ്ട്‌. ഒന്നിൽ മോട്ടോറായി ശക്തിയേറിയ ഒരു സ്ഥിരകാന്തവും (permanent magnet)മേറ്റേതിൽ ഒരു വൈദ്യുതകാന്തവും (electro-magnet)  ഉേപയോഗിക്കുന്നു.
+
-
ചെറിയ ഉച്ചഭാഷിണികളിൽ സ്ഥിരകാന്തം ഉപയോഗിക്കുന്നത്‌ ലാഭകരമാണ്‌. ഇടത്തരം അളവുകളിൽ ഇവയുടെ വില ഏതാണ്ട്‌ സമമാണ്‌. വലിയ ഉച്ചഭാഷിണികളിലാകട്ടെ വൈദ്യുതകാന്തമാണ്‌ ലാഭകരം. എന്നാൽ അവയ്‌ക്കു വേണ്ടിവരുന്ന വൈദ്യുതവ്യയം പരിഗണിക്കുമ്പോള്‍ രണ്ടും ഒരുപോലെയാണെന്നു കാണാം.
+
-
നാദച്ചുരുളുകള്‍ക്ക്‌ സാധാരണയായി വളരെ ചെറിയ രോധം (resistance)ആണുള്ളത്‌ (ഉദാ. 3 മുതൽ 20 വരെ ഓം). കൂടുതൽ രോധമുള്ള നാദച്ചുരുളുകള്‍ക്ക്‌ ക്ഷമത (efficiency) കുറവാണ്‌.
+
-
ഗതികഉച്ചഭാഷിണികള്‍ക്ക്‌ ഉറപ്പും വിലക്കുറവുമുണ്ടായിരിക്കും. അവ എളുപ്പത്തിൽ വിരൂപണ വിധേയമാകുന്നില്ല. വൈദ്യുതോർജത്തെ ശബ്‌ദോർജമാക്കി മാറ്റാനുള്ള സൗകര്യം അവയ്‌ക്ക്‌ കൂടുതൽ ഉണ്ട്‌.
+
-
3. കാന്തിക ആർമെച്ചർ ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണിയുടെ നാദച്ചുരുളിൽക്കൂടി വൈദ്യുതി കടത്തിവിടുമ്പോള്‍ ആർമെച്ചറിന്റെ ഒരു വശത്ത്‌ കാന്തശക്തി കൂടുകയും മറുവശത്ത്‌ കുറയുകയും ചെയ്യുന്നു (തിരിച്ചും സംഭവിക്കുന്നു). കാന്തശക്തി കൂടുന്ന ഭാഗത്തേക്ക്‌ ആർമെച്ചർ നീങ്ങുന്നതിനൊപ്പം കോണ്‍ഡയഫ്രം ചലിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ വൈദ്യുതോർജം ശബ്‌ദോർജമായി മാറും.
+
[[ചിത്രം:Vol4_544_1.jpg|thumb|ചിത്രം 1ഗതികവൈദ്യുത ഉച്ചഭാഷിണി(സ്ഥിരാങ്കം)1. ഫ്രയിം 2. പേപ്പര്‍ കോണ്‍ 3. വോയിസ്‌ കോയില്‍ (നാദച്ചുരുള്‍)സ്‌പൈഡര്‍ 5. സ്ഥിരകാന്തം
-
ഈ ഉച്ചഭാഷിണിയിൽ നാദച്ചുരുള്‍ ചലിക്കുന്നില്ല. അതുകൊണ്ട്‌ വലിയ നാദച്ചുരുള്‍ ഘടിപ്പിക്കാന്‍ സാധിക്കും. വലിയ നാദച്ചുരുള്‍ ഉന്നതാവൃത്തി(high frequency))കളിൽ കൂടുതൽ രോധം ഉണ്ടാക്കുന്നതിനാൽ ആ സന്ദർഭങ്ങളിൽ നിമ്‌നാവൃത്തി(low frequency)കളിലുള്ള പ്രഷകം ആയി ഉപയോഗിക്കാന്‍ സാധിക്കും. എന്നാൽ ഇതിന്‌ ഒരു പരിധി ഉണ്ട്‌. നിമ്‌നാവൃത്തികളിൽ ഒരു പ്രത്യേക ആവൃത്തിയിൽ അനുനാദം (resonance) സംഭവിക്കുന്നതുകൊണ്ട്‌ അതിൽ താഴെയുള്ള ആവൃത്തികളുടെ പ്രഷണത്തിന്‌ ഇവ അനുയോജ്യമല്ല. ഇത്തരം അനുനാദ-ആവൃത്തികള്‍ ശരിയായ രൂപകല്‌പനകൊണ്ട്‌ 100 ഹെർട്‌സ്‌വരെ താഴെകൊണ്ടുവരാന്‍ സാധിക്കും.
+
ചിത്രം 2 ഗതികവൈദ്യുത ഉച്ചഭാഷിണി(വൈദ്യുതകാന്തം)1. ഫീല്‍ഡ്‌കോയില്‍ 2. പേപ്പര്‍ കോണ്‍ 3. വോയിസ്‌ കോയില്‍(നാദച്ചുരുള്‍)]]
-
[[ചിത്രം:Vol5p433_Uchabhashini-2.jpg|thumb|]]
+
 +
പ്രധാനമായി രണ്ടുവിധത്തിലുള്ള ഗതികവൈദ്യുത ഉച്ചഭാഷിണികള്‍ ഉണ്ട്‌. ഒന്നില്‍ മോട്ടോറായി ശക്തിയേറിയ ഒരു സ്ഥിരകാന്തവും (permanent magnet)മേറ്റേതില്‍ ഒരു വൈദ്യുതകാന്തവും (electro-magnet)  ഉേപയോഗിക്കുന്നു.
 +
ചെറിയ ഉച്ചഭാഷിണികളില്‍ സ്ഥിരകാന്തം ഉപയോഗിക്കുന്നത്‌ ലാഭകരമാണ്‌. ഇടത്തരം അളവുകളില്‍ ഇവയുടെ വില ഏതാണ്ട്‌ സമമാണ്‌. വലിയ ഉച്ചഭാഷിണികളിലാകട്ടെ വൈദ്യുതകാന്തമാണ്‌ ലാഭകരം. എന്നാല്‍ അവയ്‌ക്കു വേണ്ടിവരുന്ന വൈദ്യുതവ്യയം പരിഗണിക്കുമ്പോള്‍ രണ്ടും ഒരുപോലെയാണെന്നു കാണാം.
 +
നാദച്ചുരുളുകള്‍ക്ക്‌ സാധാരണയായി വളരെ ചെറിയ രോധം (resistance)ആണുള്ളത്‌ (ഉദാ. 3 മുതല്‍ 20 വരെ ഓം). കൂടുതല്‍ രോധമുള്ള നാദച്ചുരുളുകള്‍ക്ക്‌ ക്ഷമത (efficiency) കുറവാണ്‌.
 +
ഗതികഉച്ചഭാഷിണികള്‍ക്ക്‌ ഉറപ്പും വിലക്കുറവുമുണ്ടായിരിക്കും. അവ എളുപ്പത്തില്‍ വിരൂപണ വിധേയമാകുന്നില്ല. വൈദ്യുതോര്‍ജത്തെ ശബ്‌ദോര്‍ജമാക്കി മാറ്റാനുള്ള സൗകര്യം അവയ്‌ക്ക്‌ കൂടുതല്‍ ഉണ്ട്‌.
-
4. സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണികളിൽ സ്ഥിരവൈദ്യുത തത്ത്വങ്ങള്‍ (electrostatic principles) ഉപയോഗിക്കുന്നു. ഘടനാപരമായി ഇവയും സംധാരിത്രങ്ങള്‍ (capacitors)ആെണ്‌. ഇവയിലെ ഒരു ഇലക്‌ട്രാഡ്‌ ചലനാത്മകമായ ഒരു ഡയഫ്രമായി പ്രവർത്തിക്കുന്നു. വിരൂപണം കുറയ്‌ക്കാനും സംവേദകത കൂട്ടാനും വേണ്ടി രണ്ട്‌ ഇലക്‌ട്രാഡുകള്‍ക്കും ഇടയ്‌ക്ക്‌ ഒരു നേർകറണ്ട്‌ അഭിനതിവോള്‍ട്ടത (direct current bias potential) പ്രയോഗിക്കുന്നു. ഇതിന്‌ ഉപരിയായി സിഗ്നൽകറണ്ട്‌ പ്രയോഗിക്കുമ്പോള്‍ ഡയഫ്രത്തെ ചലിപ്പിക്കുന്ന ഒരു ശക്തി ഉണ്ടാകുന്നു. ഡയഫ്രത്തിന്റെ ചലനം ശബ്‌ദമായി മാറുകയും ചെയ്യുന്നു.
+
3. കാന്തിക ആര്‍മെച്ചര്‍ ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണിയുടെ നാദച്ചുരുളില്‍ക്കൂടി വൈദ്യുതി കടത്തിവിടുമ്പോള്‍ ആര്‍മെച്ചറിന്റെ ഒരു വശത്ത്‌ കാന്തശക്തി കൂടുകയും മറുവശത്ത്‌ കുറയുകയും ചെയ്യുന്നു (തിരിച്ചും സംഭവിക്കുന്നു). കാന്തശക്തി കൂടുന്ന ഭാഗത്തേക്ക്‌ ആര്‍മെച്ചര്‍ നീങ്ങുന്നതിനൊപ്പം കോണ്‍ഡയഫ്രം ചലിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ വൈദ്യുതോര്‍ജം ശബ്‌ദോര്‍ജമായി മാറും.
-
വിലക്കുറവും വിരൂപണസാധ്യതക്കുറവും ആണ്‌ സ്ഥിരവൈദ്യുതഉച്ചഭാഷിണികളുടെ മേന്മ എങ്കിലും ക്ഷമത കുറവാണ്‌. വലിയ നേർകറണ്ട്‌ വോള്‍ട്ടത കൊണ്ടുള്ള അപകടസാധ്യതയും ഇവയ്‌ക്ക്‌ കൂടുതൽ ഉണ്ട്‌. സാധാരണയായി ഇവ ഉന്നതാവൃത്തികളിലാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌.
+
ഈ ഉച്ചഭാഷിണിയില്‍ നാദച്ചുരുള്‍ ചലിക്കുന്നില്ല. അതുകൊണ്ട്‌ വലിയ നാദച്ചുരുള്‍ ഘടിപ്പിക്കാന്‍ സാധിക്കും. വലിയ നാദച്ചുരുള്‍ ഉന്നതാവൃത്തി(high frequency))കളില്‍ കൂടുതല്‍ രോധം ഉണ്ടാക്കുന്നതിനാല്‍ ആ സന്ദര്‍ഭങ്ങളില്‍ നിമ്‌നാവൃത്തി(low frequency)കളിലുള്ള പ്രഷകം ആയി ഉപയോഗിക്കാന്‍ സാധിക്കും. എന്നാല്‍ ഇതിന്‌ ഒരു പരിധി ഉണ്ട്‌. നിമ്‌നാവൃത്തികളില്‍ ഒരു പ്രത്യേക ആവൃത്തിയില്‍ അനുനാദം (resonance) സംഭവിക്കുന്നതുകൊണ്ട്‌ അതില്‍ താഴെയുള്ള ആവൃത്തികളുടെ പ്രഷണത്തിന്‌ ഇവ അനുയോജ്യമല്ല. ഇത്തരം അനുനാദ-ആവൃത്തികള്‍ ശരിയായ രൂപകല്‌പനകൊണ്ട്‌ 100 ഹെര്‍ട്‌സ്‌വരെ താഴെകൊണ്ടുവരാന്‍ സാധിക്കും.
-
[[ചിത്രം:Vol5p433_Uchabhashini-5.jpg|thumb|]]
+
[[ചിത്രം:Vol4_544_2.jpg|thumb|ചിത്രം 3 കാന്തിക ആര്‍മെച്ചര്‍ ഉച്ചഭാഷിണി1. ഉച്ചഭാഷിണി കോണ്‍ 2. ഉത്തോലകം 3. കാന്തം 4. ആര്‍മെച്ചര്‍]]
-
5. ക്രിസ്റ്റൽ ഉച്ചഭാഷിണി. ഇവ പീസോവൈദ്യുത തത്ത്വം (piezo-electric principle)അനുസരിച്ച്‌ പ്രവർത്തിക്കുന്നു. രണ്ടു ക്രിസ്റ്റലുകള്‍ ഒന്നിനുപരിയായി മറ്റൊന്നു ചേർത്ത്‌ അവയിൽനിന്ന്‌ രണ്ടു ബന്ധങ്ങള്‍ (connections)വെളിയിലേക്ക്‌ എടുത്തിരിക്കുന്നു. ക്രിസ്റ്റലുകള്‍ ഉത്തോലകം (lever)) മുഖേന ഒരു ഡയഫ്രവുമായി ബന്ധിച്ചിരിക്കുന്നു. ക്രിസ്റ്റലുകളുടെ ചലനം വളരെ ലഘുവായതുകൊണ്ട്‌ കൂടുതൽ ശബ്‌ദം കിട്ടാന്‍ ഇത്തരമൊരു ക്രമീകരണം ആവശ്യമാണ്‌. ക്രിസ്റ്റലുകളിൽ ഒരു പ്രത്യേക അക്ഷത്തിൽക്കൂടി വൈദ്യുതി പ്രവഹിപ്പിക്കുമ്പോള്‍ അതിനു ലംബമായ അക്ഷ(axis)ത്തെിൽക്കൂടി അവയ്‌ക്ക്‌ ചലനം സംഭവിക്കുന്നു. ഈ തത്ത്വമനുസരിച്ച്‌ ബാഹ്യബന്ധങ്ങളിൽ(external connections))ക്കെൂടി സിഗ്നൽ പ്രവഹിക്കുമ്പോള്‍ യഥാതഥമായ ചലനങ്ങള്‍ ഉത്തോലകദണ്ഡിൽ പ്രത്യക്ഷമാകുന്നു. ഇവ ഡയഫ്രത്തെ ചലിപ്പിച്ച്‌ ശബ്‌ദം ഉണ്ടാക്കുകയും ചെയ്യുന്നു. ഉത്തോലകങ്ങള്‍ ഉപയോഗിക്കുന്നതുകൊണ്ട്‌ ഉന്നതാവൃത്തികളിൽ ഈ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കാന്‍ സാധ്യമല്ല.
+
4. സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണികളില്‍ സ്ഥിരവൈദ്യുത തത്ത്വങ്ങള്‍ (electrostatic principles) ഉപയോഗിക്കുന്നു. ഘടനാപരമായി ഇവയും സംധാരിത്രങ്ങള്‍ (capacitors)ആെണ്‌. ഇവയിലെ ഒരു ഇലക്‌ട്രാഡ്‌ ചലനാത്മകമായ ഒരു ഡയഫ്രമായി പ്രവര്‍ത്തിക്കുന്നു. വിരൂപണം കുറയ്‌ക്കാനും സംവേദകത കൂട്ടാനും വേണ്ടി രണ്ട്‌ ഇലക്‌ട്രാഡുകള്‍ക്കും ഇടയ്‌ക്ക്‌ ഒരു നേര്‍കറണ്ട്‌ അഭിനതിവോള്‍ട്ടത (direct current bias potential) പ്രയോഗിക്കുന്നു. ഇതിന്‌ ഉപരിയായി സിഗ്നല്‍കറണ്ട്‌ പ്രയോഗിക്കുമ്പോള്‍ ഡയഫ്രത്തെ ചലിപ്പിക്കുന്ന ഒരു ശക്തി ഉണ്ടാകുന്നു. ഡയഫ്രത്തിന്റെ ചലനം ശബ്‌ദമായി മാറുകയും ചെയ്യുന്നു.
-
[[ചിത്രം:Vol5p433_Uchabhashini-3.jpg|thumb|]]
+
വിലക്കുറവും വിരൂപണസാധ്യതക്കുറവും ആണ്‌ സ്ഥിരവൈദ്യുതഉച്ചഭാഷിണികളുടെ മേന്മ എങ്കിലും ക്ഷമത കുറവാണ്‌. വലിയ നേര്‍കറണ്ട്‌ വോള്‍ട്ടത കൊണ്ടുള്ള അപകടസാധ്യതയും ഇവയ്‌ക്ക്‌ കൂടുതല്‍ ഉണ്ട്‌. സാധാരണയായി ഇവ ഉന്നതാവൃത്തികളിലാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌.
-
[[ചിത്രം:Vol5p433_Uchabhashini-4.jpg|thumb|]]
+
[[ചിത്രം:Vol4_544_3.jpg|thumb|ചിത്രം 4 സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി1. ഒന്നാം ഇലക്‌ട്രാഡ്‌-ലോഹം പൂശിയ പ്ലാസ്റ്റിക്‌ ഡയഫ്രം 2. രണ്ടാം ഇലക്‌ട്രാഡ്‌ 3. വായു അറകള്‍]]
 +
5. ക്രിസ്റ്റല്‍ ഉച്ചഭാഷിണി. ഇവ പീസോവൈദ്യുത തത്ത്വം (piezo-electric principle)അനുസരിച്ച്‌ പ്രവര്‍ത്തിക്കുന്നു. രണ്ടു ക്രിസ്റ്റലുകള്‍ ഒന്നിനുപരിയായി മറ്റൊന്നു ചേര്‍ത്ത്‌ അവയില്‍നിന്ന്‌ രണ്ടു ബന്ധങ്ങള്‍ (connections)വെളിയിലേക്ക്‌ എടുത്തിരിക്കുന്നു. ക്രിസ്റ്റലുകള്‍ ഉത്തോലകം (lever)) മുഖേന ഒരു ഡയഫ്രവുമായി ബന്ധിച്ചിരിക്കുന്നു. ക്രിസ്റ്റലുകളുടെ ചലനം വളരെ ലഘുവായതുകൊണ്ട്‌ കൂടുതല്‍ ശബ്‌ദം കിട്ടാന്‍ ഇത്തരമൊരു ക്രമീകരണം ആവശ്യമാണ്‌. ക്രിസ്റ്റലുകളില്‍ ഒരു പ്രത്യേക അക്ഷത്തില്‍ക്കൂടി വൈദ്യുതി പ്രവഹിപ്പിക്കുമ്പോള്‍ അതിനു ലംബമായ അക്ഷ(axis)ത്തെില്‍ക്കൂടി അവയ്‌ക്ക്‌ ചലനം സംഭവിക്കുന്നു. ഈ തത്ത്വമനുസരിച്ച്‌ ബാഹ്യബന്ധങ്ങളില്‍(external connections))ക്കെൂടി സിഗ്നല്‍ പ്രവഹിക്കുമ്പോള്‍ യഥാതഥമായ ചലനങ്ങള്‍ ഉത്തോലകദണ്ഡില്‍ പ്രത്യക്ഷമാകുന്നു. ഇവ ഡയഫ്രത്തെ ചലിപ്പിച്ച്‌ ശബ്‌ദം ഉണ്ടാക്കുകയും ചെയ്യുന്നു. ഉത്തോലകങ്ങള്‍ ഉപയോഗിക്കുന്നതുകൊണ്ട്‌ ഉന്നതാവൃത്തികളില്‍ ഈ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കാന്‍ സാധ്യമല്ല.
-
6. തെർമോഫോണ്‍. ഇതിൽ കനം കുറഞ്ഞ ഒരു വൈദ്യുതവാഹിയിൽക്കൂടി വൈദ്യുതി ഒഴുകുമ്പോള്‍ ഉണ്ടാകുന്ന ചൂടും തത്‌ഫലമായി ഉണ്ടാകുന്ന ചലനങ്ങളും ഉപയോഗപ്പെടുത്തുകയാണു ചെയ്യുന്നത്‌. തെർമോഫോണിൽ വളരെ കനംകുറഞ്ഞ ഒരു പ്ലാറ്റിനം തകിട്‌ രണ്ടറ്റത്തും ബന്ധിപ്പിച്ചനിലയിൽ സ്ഥിതിചെയ്യുന്നു. ഒരു പ്രത്യാവർത്തികറണ്ട്‌ ഇതിൽക്കൂടി ഒഴുകുമ്പോള്‍ തകിട്‌ ചൂടാകുകയും കമ്പനം (vibration)കൊള്ളുകയും ചെയ്യുന്നു. ഈ കമ്പനങ്ങള്‍ സമീപത്തുള്ള വായുവിലേക്കു പ്രസരിച്ച്‌ ശബ്‌ദമായി മാറുന്നു. കമ്പി എത്രത്തോളം കനം കുറഞ്ഞിരിക്കുന്നുവോ, അത്രയും എളുപ്പം കമ്പിയിൽ സിഗ്നൽകറണ്ടിനനുസരിച്ചുള്ള കമ്പനങ്ങളുണ്ടാകുന്നു. പരീക്ഷണശാലകളിൽ മൈക്രാഫോണുകള്‍ അംശാങ്കനം (calibration) ചെയ്യാന്‍ ഇവ ഉപയോഗിക്കുന്നു.
+
[[ചിത്രം:Vol4_544_4.jpg|thumb|ചിത്രം 5 ക്രിസ്റ്റല്‍ ഉച്ചഭാഷിണി 1. കോണ്‍ 2. ക്രിസ്റ്റലുകള്‍ 3. ബാഹ്യടെര്‍മിനലുകള്‍ 4. ഉത്തോലകം]]
-
7. ഹോണ്‍ ഉച്ചഭാഷിണികള്‍. ഉന്നതമർദത്തിലും ലഘുവേഗത്തിലുമുള്ള ശബ്‌ദോർജത്തെ ലഘുമർദത്തിലും ഉന്നതവേഗത്തിലുമുള്ള ഊർജമാക്കി മാറ്റുവാന്‍ ഹോണ്‍ ഉച്ചഭാഷിണി ഉപയോഗിക്കുന്നു. ഹോണുകള്‍ ഒരു ഡയഫ്രത്തിനോടോ കോണിനോടോ ചേർത്താണ്‌ ഉപയോഗിക്കുന്നത്‌. ഇങ്ങനെ ഉപയോഗിക്കുന്ന ഹോണുകള്‍ സാധാരണഗതിയിൽ ഒരു ഡയഫ്രം നേരിടുന്ന ലോഡ്‌  (load)വർധിപ്പിച്ച്‌ ഉച്ചഭാഷിണിയുടെ കാര്യക്ഷമത മെച്ചപ്പെടുത്തുകയും തദ്വാരാ വിരൂപണം കുറയ്‌ക്കുകയും ചെയ്യുന്നു.
+
[[ചിത്രം:Vol4_545_1.jpg|thumb|ചിത്രം 6. തെര്‍മോഫോണ്‍ 1. ബാഹ്യടെര്‍മിനലുകള്‍ 2. പ്ലാറ്റിനം തകിട്‌ 3. ടെര്‍മിനല്‍ ഉറപ്പ്‌ 4. ഫൈബര്‍ അടിസ്ഥാനം]]
-
ഹോണുകള്‍ അവയുടെ ജ്യാമിതീയരൂപമനുസരിച്ച്‌ കോണികം (conical) എക്‌സ്‌പൊണന്‍ഷ്യൽ(exponential), പാരാബോളികം(parabolic) എന്നിങ്ങനെ വിവിധ രൂപങ്ങളിലുണ്ട്‌. എക്‌സ്‌പൊണന്‍ഷ്യൽ ആണ്‌ ഇവയിൽ ഏറ്റവും ഉത്തമമായിട്ടുള്ളത്‌.
+
-
[[ചിത്രം:Vol5p433_Uchabhashini-6.jpg|thumb|]]
+
-
ഹോണുകളുടെ പ്രവർത്തനം. ചലിക്കുന്ന ഒരു ഡയഫ്രം അതിനു മുമ്പിലുള്ള വായുവിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനംമൂലമുണ്ടാകുന്ന വായുമർദം ഡയഫ്രത്തിൽ പ്രതിപ്രവർത്തിക്കുന്നു. ഈ മർദം ഡയഫ്രത്തിന്റെ ഘടന അനുസരിച്ച്‌ വളരെ ലഘുവായ ഒന്നാണ്‌. അതിനാൽ ഡയഫ്രത്തിന്മേലുള്ള ലോഡും അത്‌ ചെയ്യുന്ന ജോലിയും കുറയുന്നു. തന്മൂലം വെളിയിലേക്ക്‌ പ്രസരിക്കുന്ന ശബ്‌ദോർജത്തിന്റെ അളവ്‌ കുറയുന്നു.  
+
6. തെര്‍മോഫോണ്‍. ഇതില്‍ കനം കുറഞ്ഞ ഒരു വൈദ്യുതവാഹിയില്‍ക്കൂടി വൈദ്യുതി ഒഴുകുമ്പോള്‍ ഉണ്ടാകുന്ന ചൂടും തത്‌ഫലമായി ഉണ്ടാകുന്ന ചലനങ്ങളും ഉപയോഗപ്പെടുത്തുകയാണു ചെയ്യുന്നത്‌. തെര്‍മോഫോണില്‍ വളരെ കനംകുറഞ്ഞ ഒരു പ്ലാറ്റിനം തകിട്‌ രണ്ടറ്റത്തും ബന്ധിപ്പിച്ചനിലയില്‍ സ്ഥിതിചെയ്യുന്നു. ഒരു പ്രത്യാവര്‍ത്തികറണ്ട്‌ ഇതില്‍ക്കൂടി ഒഴുകുമ്പോള്‍ തകിട്‌ ചൂടാകുകയും കമ്പനം (vibration)കൊള്ളുകയും ചെയ്യുന്നു. ഈ കമ്പനങ്ങള്‍ സമീപത്തുള്ള വായുവിലേക്കു പ്രസരിച്ച്‌ ശബ്‌ദമായി മാറുന്നു. കമ്പി എത്രത്തോളം കനം കുറഞ്ഞിരിക്കുന്നുവോ, അത്രയും എളുപ്പം കമ്പിയില്‍ സിഗ്നല്‍കറണ്ടിനനുസരിച്ചുള്ള കമ്പനങ്ങളുണ്ടാകുന്നു. പരീക്ഷണശാലകളില്‍ മൈക്രാഫോണുകള്‍ അംശാങ്കനം (calibration) ചെയ്യാന്‍ ഇവ ഉപയോഗിക്കുന്നു.
-
[[ചിത്രം:Vol5p433_Uchabhashini-7.jpg|thumb|]]
+
-
ഡയഫ്രത്തിനോട്‌ ഒരു ഹോണ്‍ ഘടിപ്പിക്കുമ്പോള്‍ അതിനു മുമ്പുള്ള വായുസ്ഥലം കുറയുന്നു. ഹോണിന്റെ കഴുത്തിനെ(throat) അേപേക്ഷിച്ച്‌ ഡയഫ്രത്തിന്‌ വിസ്‌താരം കൂടുമെങ്കിൽ ഡയഫ്രത്തിന്മേൽ കൂടുതൽ മർദം ഏൽക്കുകയും അതനുസരിച്ച്‌ ഡയഫ്രം കൂടുതൽ പ്രവർത്തിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ ഡയഫ്രം ലോഡ്‌ ചെയ്യപ്പെടുന്നു. ഇപ്രകാരം ഉണ്ടാകുന്ന മർദം കോണിന്റെ വായ്‌ഭാഗത്തുകൂടി അന്തരീക്ഷത്തിലേക്കു വ്യാപിക്കുന്നു. ഹോണിന്റെ കഴുത്ത്‌ എത്രത്തോളം ചെറുതാകുമോ അത്രത്തോളം കാര്യക്ഷമത കൂടുന്നതാണ്‌. അതുപോലെ വായ്‌ എത്രത്തോളം വലുതാകുമോ അത്രത്തോളം പ്രതിഫലനം (refle-ction) കുറയ്‌ക്കാന്‍ കഴിയും. എന്നാൽ സാങ്കേതികമായ ചില തടസ്സങ്ങളുള്ളതുകൊണ്ട്‌ ഒരു പരിധിവരെ മാത്രമേ രണ്ടും വ്യത്യാസപ്പെടുത്താന്‍ കഴിയൂ.
+
7. ഹോണ്‍ ഉച്ചഭാഷിണികള്‍. ഉന്നതമര്‍ദത്തിലും ലഘുവേഗത്തിലുമുള്ള ശബ്‌ദോര്‍ജത്തെ ലഘുമര്‍ദത്തിലും ഉന്നതവേഗത്തിലുമുള്ള ഊര്‍ജമാക്കി മാറ്റുവാന്‍ ഹോണ്‍ ഉച്ചഭാഷിണി ഉപയോഗിക്കുന്നു. ഹോണുകള്‍ ഒരു ഡയഫ്രത്തിനോടോ കോണിനോടോ ചേര്‍ത്താണ്‌ ഉപയോഗിക്കുന്നത്‌. ഇങ്ങനെ ഉപയോഗിക്കുന്ന ഹോണുകള്‍ സാധാരണഗതിയില്‍ ഒരു ഡയഫ്രം നേരിടുന്ന ലോഡ്‌  (load)വര്‍ധിപ്പിച്ച്‌ ഉച്ചഭാഷിണിയുടെ കാര്യക്ഷമത മെച്ചപ്പെടുത്തുകയും തദ്വാരാ വിരൂപണം കുറയ്‌ക്കുകയും ചെയ്യുന്നു.
-
മടക്കിയ ഹോണ്‍ (Folded horn). ഹോണിന്റെ കഴുത്ത്‌ തീരെ ചെറുതാകുകയും വായ്‌ വളരെ വലുതാകുകയും ചെയ്യുമ്പോള്‍ ഗണിതശാസ്‌ത്രസിദ്ധാന്തമനുസരിച്ച്‌ നീളം വളരെ കൂട്ടേണ്ടിവരും. താത്ത്വികമായി ഈ നീളം 5 മുതൽ 10 വരെ മീറ്റർ ആകാം. ഇങ്ങനെയുള്ള ഹോണുകള്‍ ഉണ്ടാക്കാന്‍ പ്രായോഗികവിഷമങ്ങളുള്ളതുകൊണ്ട്‌ ഹോണ്‍ മടക്കിയ രൂപത്തിൽ (നീളം കൂട്ടി) ഉപയോഗിക്കുന്നു.
+
ഹോണുകള്‍ അവയുടെ ജ്യാമിതീയരൂപമനുസരിച്ച്‌ കോണികം (conical) എക്‌സ്‌പൊണന്‍ഷ്യല്‍(exponential), പാരാബോളികം(parabolic) എന്നിങ്ങനെ വിവിധ രൂപങ്ങളിലുണ്ട്‌. എക്‌സ്‌പൊണന്‍ഷ്യല്‍ ആണ്‌ ഇവയില്‍ ഏറ്റവും ഉത്തമമായിട്ടുള്ളത്‌.
-
8. ബഹു-ഉച്ചഭാഷിണി (Multiple L.S.). ഒന്നിലധികം ഉച്ചഭാഷിണികള്‍ ചേർത്തുണ്ടാക്കുന്ന സംവിധാനം. ശബ്‌ദം ഒരേ ദിശയിലേക്കു വിടുന്നത്‌ ആവശ്യമായിവരുമ്പോള്‍ ബഹു-ഉച്ചഭാഷിണിസംവിധാനം ഉപയോഗിക്കാം. ഒന്നിൽക്കൂടുതൽ ഉച്ചഭാഷിണികള്‍ ഒരേ ദിശയിലേക്കു തിരിച്ചുവയ്‌ക്കുമ്പോള്‍ ആ ഭാഗത്തേക്ക്‌ ശബ്‌ദപ്രസരണം കൂടുന്നു. ആഡിറ്റോറിയങ്ങളിലും മറ്റും ഇപ്രകാരമുള്ള സംവിധാനങ്ങള്‍ ഉപയോഗിക്കാവുന്നതാണ്‌.
+
[[ചിത്രം:Vol4_545_2.jpg|thumb|ചിത്രം 7. ഹോണ്‍ ഉച്ചഭാഷിണി 1. ഡയഫ്രം 2. കഴുത്ത്‌ 3. വായ്‌]]
-
[[ചിത്രം:Vol5p433_Uchabhashini-9.jpg|thumb|]]
+
ഹോണുകളുടെ പ്രവര്‍ത്തനം. ചലിക്കുന്ന ഒരു ഡയഫ്രം അതിനു മുമ്പിലുള്ള വായുവിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനംമൂലമുണ്ടാകുന്ന വായുമര്‍ദം ഡയഫ്രത്തില്‍ പ്രതിപ്രവര്‍ത്തിക്കുന്നു. ഈ മര്‍ദം ഡയഫ്രത്തിന്റെ ഘടന അനുസരിച്ച്‌ വളരെ ലഘുവായ ഒന്നാണ്‌. അതിനാല്‍ ഡയഫ്രത്തിന്മേലുള്ള ലോഡും അത്‌ ചെയ്യുന്ന ജോലിയും കുറയുന്നു. തന്മൂലം വെളിയിലേക്ക്‌ പ്രസരിക്കുന്ന ശബ്‌ദോര്‍ജത്തിന്റെ അളവ്‌ കുറയുന്നു.
-
9. ഹൈ ഫിഡലിറ്റി ഉച്ചഭാഷിണി(High fidelity L.S.). ഏതുതരം ഉച്ചഭാഷിണിയായാലും ശബ്‌ദത്തിന്റെ എല്ലാ ആവൃത്തികളിലും തൃപ്‌തികരമായി പ്രവർത്തനക്ഷമമാകില്ല. അതിനാൽ സാധാരണ റേഡിയോയിലും അതുപോലുള്ള മറ്റുപകരണങ്ങളിലും ശബ്‌ദാവൃത്തിയുടെ മധ്യഭാഗത്ത്‌ (400 മുതൽ 600 വരെ ഹെർട്‌സ്‌) സാമാന്യം തൃപ്‌തികരമായി പ്രവർത്തിക്കുന്ന ഉച്ചഭാഷിണികളാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌. എന്നാൽ ഒരു ഹൈ ഫിഡലിറ്റി സംവിധാനത്തിൽ ശബ്‌ദത്തിന്റെ എല്ലാ മേഖകളിലുമുള്ള ആവൃത്തികള്‍ (30 ഹെർട്‌സ്‌ മുതൽ 15 കിലോ ഹെർട്‌സ്‌ വരെ) ആവശ്യമാണെന്നതുകൊണ്ട്‌ ഒന്നിൽക്കൂടുതൽ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കുന്നു. ഇവ ശബ്‌ദാവൃത്തിയുടെ വിവിധ മേഖലകളിൽ മാത്രം പ്രവർത്തിക്കുന്നവയായിരിക്കും. നിമ്‌നാവൃത്തിയിൽ പ്രവർത്തിക്കുന്നവ വൂഫർ (woofer) എന്നും ഉന്നതാവൃത്തികളിൽ പ്രവർത്തിക്കുന്നവ ട്വീറ്റർ  (tweeter) എന്നും അറിയപ്പെടുന്നു. നിമ്‌നാവൃത്തിയിലെ ശബ്‌ദത്തിന്‌ കൂടുതൽ ശക്തിയുള്ളതിനാൽ വൂഫർ വലിയ വ്യാസത്തിൽ ബലവത്തായി നിർമിച്ചിരിക്കുന്നു. ട്വീറ്ററാകട്ടെ, ചെറുതും കട്ടിയുള്ളതുമായ കോണ്‍കൊണ്ടാണ്‌ ഉണ്ടാക്കിയിരിക്കുന്നത്‌. ഇതിലെ സംധാരിത്രം(capacitor) ട്വീറ്ററിലേക്ക്‌ നിമ്‌നാവൃത്തിയിലുള്ള വൈദ്യുതിപ്രവാഹം തടയുന്നു.
+
[[ചിത്രം:Vol4_545_3.jpg|thumb|ചിത്രം 8. മടക്കിയ ഹോണ്‍ 1. ഹോണ്‍ ഡയഫ്രം 2. ശബ്‌ദം സഞ്ചരിക്കുന്ന വഴി]]
-
[[ചിത്രം:Vol5p433_Uchabhashini-10.jpg|thumb|]]
+
-
ചിലപ്പോള്‍ മൂന്ന്‌ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിച്ച്‌ ഹൈ ഫിഡലിറ്റി സംവിധാനം ഉണ്ടാക്കുന്നു. ഉന്നതാവൃത്തികളിലുള്ള ശബ്‌ദം വളരെയധികം ദിശാത്മകമായതിനാൽ ഇത്തരം സന്ദർഭങ്ങളിൽ രണ്ടു വശത്തേക്കു തിരിച്ചു വച്ചിട്ടുള്ള രണ്ടു ട്വീറ്ററുകള്‍ ഉപയോഗിക്കുന്നു.
+
ഡയഫ്രത്തിനോട്‌ ഒരു ഹോണ്‍ ഘടിപ്പിക്കുമ്പോള്‍ അതിനു മുമ്പുള്ള വായുസ്ഥലം കുറയുന്നു. ഹോണിന്റെ കഴുത്തിനെ(throat) അേപേക്ഷിച്ച്‌ ഡയഫ്രത്തിന്‌ വിസ്‌താരം കൂടുമെങ്കില്‍ ഡയഫ്രത്തിന്മേല്‍ കൂടുതല്‍ മര്‍ദം ഏല്‍ക്കുകയും അതനുസരിച്ച്‌ ഡയഫ്രം കൂടുതല്‍ പ്രവര്‍ത്തിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ ഡയഫ്രം ലോഡ്‌ ചെയ്യപ്പെടുന്നു. ഇപ്രകാരം ഉണ്ടാകുന്ന മര്‍ദം കോണിന്റെ വായ്‌ഭാഗത്തുകൂടി അന്തരീക്ഷത്തിലേക്കു വ്യാപിക്കുന്നു. ഹോണിന്റെ കഴുത്ത്‌ എത്രത്തോളം ചെറുതാകുമോ അത്രത്തോളം കാര്യക്ഷമത കൂടുന്നതാണ്‌. അതുപോലെ വായ്‌ എത്രത്തോളം വലുതാകുമോ അത്രത്തോളം പ്രതിഫലനം  (refle-ction) കുറയ്‌ക്കാന്‍ കഴിയും. എന്നാല്‍ സാങ്കേതികമായ ചില തടസ്സങ്ങളുള്ളതുകൊണ്ട്‌ ഒരു പരിധിവരെ മാത്രമേ രണ്ടും വ്യത്യാസപ്പെടുത്താന്‍ കഴിയൂ.
-
വേറെ ചില സന്ദർഭങ്ങളിൽ നാല്‌ ഉച്ചഭാഷിണികളടങ്ങിയ ഒരു യൂണിറ്റ്‌ ഉപയോഗിക്കാറുണ്ട്‌. ഇത്തരം ഒരു സംവിധാനത്തിൽ ഒരു വൂഫറും രണ്ട്‌ ട്വീറ്ററുകളും മധ്യാവൃത്തികളിൽ പ്രവർത്തിക്കുന്ന ഒരു സാധാരണ ഉച്ചഭാഷിണിയും ഉണ്ടായിരിക്കും. വൂഫർ 30 മുതൽ 400 വരെ ഹെർട്‌സും, സാധാരണ ഉച്ചഭാഷിണി 400 മുതൽ 6000 വരെ ഹെർട്‌സും, ട്വീറ്ററുകള്‍ 6,000 മുതൽ 15,000 വരെ ഹെർട്‌സും ആവൃത്തികളിൽ വളരെ തൃപ്‌തികരമായി പ്രവർത്തിക്കുന്നു.
+
-
(ബി. സോമനാഥന്‍ നായർ)
+
മടക്കിയ ഹോണ്‍ (Folded horn). ഹോണിന്റെ കഴുത്ത്‌ തീരെ ചെറുതാകുകയും വായ്‌ വളരെ വലുതാകുകയും ചെയ്യുമ്പോള്‍ ഗണിതശാസ്‌ത്രസിദ്ധാന്തമനുസരിച്ച്‌ നീളം വളരെ കൂട്ടേണ്ടിവരും. താത്ത്വികമായി ഈ നീളം 5 മുതല്‍ 10 വരെ മീറ്റര്‍ ആകാം. ഇങ്ങനെയുള്ള ഹോണുകള്‍ ഉണ്ടാക്കാന്‍ പ്രായോഗികവിഷമങ്ങളുള്ളതുകൊണ്ട്‌ ഹോണ്‍ മടക്കിയ രൂപത്തില്‍ (നീളം കൂട്ടി) ഉപയോഗിക്കുന്നു.
 +
 
 +
8. ബഹു-ഉച്ചഭാഷിണി (Multiple L.S.). ഒന്നിലധികം ഉച്ചഭാഷിണികള്‍ ചേര്‍ത്തുണ്ടാക്കുന്ന സംവിധാനം. ശബ്‌ദം ഒരേ ദിശയിലേക്കു വിടുന്നത്‌ ആവശ്യമായിവരുമ്പോള്‍ ബഹു-ഉച്ചഭാഷിണിസംവിധാനം ഉപയോഗിക്കാം. ഒന്നില്‍ക്കൂടുതല്‍ ഉച്ചഭാഷിണികള്‍ ഒരേ ദിശയിലേക്കു തിരിച്ചുവയ്‌ക്കുമ്പോള്‍ ആ ഭാഗത്തേക്ക്‌ ശബ്‌ദപ്രസരണം കൂടുന്നു. ആഡിറ്റോറിയങ്ങളിലും മറ്റും ഇപ്രകാരമുള്ള സംവിധാനങ്ങള്‍ ഉപയോഗിക്കാവുന്നതാണ്‌.
 +
 
 +
[[ചിത്രം:Vol4_545_4.jpg|thumb|ചിത്രം 9. ബഹുഉച്ചഭാഷിണി സംവിധാനം A. പാര്‍ശ്വവീക്ഷണം B. മുന്‍വീക്ഷണം]]
 +
 
 +
9. ഹൈ ഫിഡലിറ്റി ഉച്ചഭാഷിണി(High fidelity L.S.). ഏതുതരം ഉച്ചഭാഷിണിയായാലും ശബ്‌ദത്തിന്റെ എല്ലാ ആവൃത്തികളിലും തൃപ്‌തികരമായി പ്രവര്‍ത്തനക്ഷമമാകില്ല. അതിനാല്‍ സാധാരണ റേഡിയോയിലും അതുപോലുള്ള മറ്റുപകരണങ്ങളിലും ശബ്‌ദാവൃത്തിയുടെ മധ്യഭാഗത്ത്‌ (400 മുതല്‍ 600 വരെ ഹെര്‍ട്‌സ്‌) സാമാന്യം തൃപ്‌തികരമായി പ്രവര്‍ത്തിക്കുന്ന ഉച്ചഭാഷിണികളാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌. എന്നാല്‍ ഒരു ഹൈ ഫിഡലിറ്റി സംവിധാനത്തില്‍ ശബ്‌ദത്തിന്റെ എല്ലാ മേഖകളിലുമുള്ള ആവൃത്തികള്‍ (30 ഹെര്‍ട്‌സ്‌ മുതല്‍ 15 കിലോ ഹെര്‍ട്‌സ്‌ വരെ) ആവശ്യമാണെന്നതുകൊണ്ട്‌ ഒന്നില്‍ക്കൂടുതല്‍ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കുന്നു. ഇവ ശബ്‌ദാവൃത്തിയുടെ വിവിധ മേഖലകളില്‍ മാത്രം പ്രവര്‍ത്തിക്കുന്നവയായിരിക്കും. നിമ്‌നാവൃത്തിയില്‍ പ്രവര്‍ത്തിക്കുന്നവ വൂഫര്‍ (woofer) എന്നും ഉന്നതാവൃത്തികളില്‍ പ്രവര്‍ത്തിക്കുന്നവ ട്വീറ്റര്‍  (tweeter) എന്നും അറിയപ്പെടുന്നു. നിമ്‌നാവൃത്തിയിലെ ശബ്‌ദത്തിന്‌ കൂടുതല്‍ ശക്തിയുള്ളതിനാല്‍ വൂഫര്‍ വലിയ വ്യാസത്തില്‍ ബലവത്തായി നിര്‍മിച്ചിരിക്കുന്നു. ട്വീറ്ററാകട്ടെ, ചെറുതും കട്ടിയുള്ളതുമായ കോണ്‍കൊണ്ടാണ്‌ ഉണ്ടാക്കിയിരിക്കുന്നത്‌. ഇതിലെ സംധാരിത്രം(capacitor) ട്വീറ്ററിലേക്ക്‌ നിമ്‌നാവൃത്തിയിലുള്ള വൈദ്യുതിപ്രവാഹം തടയുന്നു.
 +
 
 +
[[ചിത്രം:Vol4_545_5.jpg|thumb|ചിത്രം 10. ഹൈ ഫിഡലിറ്റി സംവിധാനം 1. വൂഫര്‍ 2. ട്വീറ്റര്‍ 3. കണ്ടന്‍സര്‍]]
 +
 
 +
ചിലപ്പോള്‍ മൂന്ന്‌ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിച്ച്‌ ഹൈ ഫിഡലിറ്റി സംവിധാനം ഉണ്ടാക്കുന്നു. ഉന്നതാവൃത്തികളിലുള്ള ശബ്‌ദം വളരെയധികം ദിശാത്മകമായതിനാല്‍ ഇത്തരം സന്ദര്‍ഭങ്ങളില്‍ രണ്ടു വശത്തേക്കു തിരിച്ചു വച്ചിട്ടുള്ള രണ്ടു ട്വീറ്ററുകള്‍ ഉപയോഗിക്കുന്നു.
 +
വേറെ ചില സന്ദര്‍ഭങ്ങളില്‍ നാല്‌ ഉച്ചഭാഷിണികളടങ്ങിയ ഒരു യൂണിറ്റ്‌ ഉപയോഗിക്കാറുണ്ട്‌. ഇത്തരം ഒരു സംവിധാനത്തില്‍ ഒരു വൂഫറും രണ്ട്‌ ട്വീറ്ററുകളും മധ്യാവൃത്തികളില്‍ പ്രവര്‍ത്തിക്കുന്ന ഒരു സാധാരണ ഉച്ചഭാഷിണിയും ഉണ്ടായിരിക്കും. വൂഫര്‍ 30 മുതല്‍ 400 വരെ ഹെര്‍ട്‌സും, സാധാരണ ഉച്ചഭാഷിണി 400 മുതല്‍ 6000 വരെ ഹെര്‍ട്‌സും, ട്വീറ്ററുകള്‍ 6,000 മുതല്‍ 15,000 വരെ ഹെര്‍ട്‌സും ആവൃത്തികളില്‍ വളരെ തൃപ്‌തികരമായി പ്രവര്‍ത്തിക്കുന്നു.
 +
 
 +
(ബി. സോമനാഥന്‍ നായര്‍)

Current revision as of 12:05, 11 സെപ്റ്റംബര്‍ 2014

ഉച്ചഭാഷിണി

Loudspeaker

ശ്രാതാക്കള്‍ക്ക്‌ വ്യക്തമായി കേള്‍ക്കാന്‍ കഴിയത്തക്കവിധം ശബ്‌ദത്തെ ഉച്ചത്തിലാക്കുന്ന വൈദ്യുതോപകരണം. പ്രയോഗിക്കപ്പെടുന്ന വൈദ്യുതസിഗ്നലിന്‌ അനുസരണമായി ഈ ഉപകരണത്തിലൂടെ ശബ്‌ദം ഒരു മുറിയിലേക്കോ തുറസ്സായ സ്ഥലത്തേക്കോ കൂടുതല്‍ ഉച്ചത്തില്‍ പ്രസരിപ്പിക്കുന്നു. ഉച്ചഭാഷിണിയുടെ "മോട്ടോര്‍' എന്ന ഭാഗം വൈദ്യുതസിഗ്നലിനെ, അതിനോടുകൂടി ഘടിപ്പിച്ചിട്ടുള്ള ഒരു ഡയഫ്രത്തിന്റെ യഥാതഥമായ ചലനത്തില്‍ക്കൂടി, അന്തരീക്ഷവായുവിലേക്ക്‌ പ്രസരിപ്പിക്കുന്നു. ഈ ചലനങ്ങള്‍ ഡയഫ്രത്തിന്റെ മുമ്പിലും പിറകിലുമുള്ള വായുവിനെ മുമ്പോട്ടും പിമ്പോട്ടും ചലിപ്പിക്കുകയും തത്‌ഫലമായി വൈദ്യുതോര്‍ജത്തിനു സമാനമായ ശബ്‌ദം ഉണ്ടാകുകയും ചെയ്യുന്നു.


ചരിത്രം. 1861-ല്‍ ജര്‍മന്‍കാരനായ ഫിലിപ്പ്‌ റൈസെ മനുഷ്യശബ്‌ദം വൈദ്യുതി ഉപയോഗിച്ച്‌ പ്രഷണം ചെയ്‌തതോടുകൂടിയാണ്‌ ഉച്ചഭാഷിണിയുടെ ചരിത്രം തുടങ്ങുന്നത്‌. 1876-ല്‍ ഗ്രഹാം ബെല്‍ ആദ്യത്തെ ടെലിഫോണ്‍സ്വീകരണി കണ്ടുപിടിച്ചു. 1878-ല്‍ വെയ്‌നര്‍ വി. സീമെന്‍സ്‌ എന്ന ജര്‍മന്‍ശാസ്‌ത്രജ്ഞന്‍ ഗതികവൈദ്യുത ഉച്ചഭാഷിണി (electro-dynamic loudspeaker) നിര്‍മിച്ചു. ഇലക്‌ട്രാണികവാല്‍വുകള്‍ കണ്ടുപിടിക്കുന്നതിനു മുമ്പുള്ള കാലങ്ങളില്‍ ഉച്ചത്തില്‍ ശബ്‌ദം ലഭിക്കുന്നതിന്‌ ഉച്ചഭാഷിണികളോടുകൂടി ഹോണു(horn)കളും ഘടിപ്പിക്കുക പതിവായിരുന്നു. 1888-ല്‍ ഫെര്‍ഡിനന്‍ഡ്‌ ബ്രൗണ്‍ "തെര്‍മോഫോണ്‍' എന്ന ഉപകരണം കണ്ടുപിടിച്ചു. തുടര്‍ന്ന്‌ 1922-ല്‍ എംഗല്‍ വോഗ്‌ത്‌, മസോള്‍ എന്നിവര്‍ ചേര്‍ന്ന്‌ ചലച്ചിത്രങ്ങള്‍ക്ക്‌ ശബ്‌ദം കൊടുക്കുന്നതിന്‌ സ്റ്റാറ്റോഫോണ്‍ എന്ന പേരില്‍ സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി(electrostatic loudspeaker)ഉപയോഗിച്ചു. 1924-ല്‍ റീഗെര്‍, ഹോണ്‍ ഉപയോഗിക്കാത്ത ആദ്യത്തെ ഉച്ചഭാഷിണി നിര്‍മിച്ചു. ഗതികവൈദ്യുത തത്ത്വത്തില്‍ പ്രവര്‍ത്തിച്ചിരുന്ന ഈ ഉപകരണം ബ്ലാത്താലര്‍ എന്ന പേരിലറിയപ്പെട്ടു. ഈ കാലഘട്ടത്തില്‍ത്തന്നെ ചാള്‍സ്‌ റൈസ്‌, എഡ്വേര്‍ഡ്‌ കെല്ലോഗ്‌ എന്നീ അമേരിക്കക്കാര്‍ ചേര്‍ന്ന്‌ ഇന്നു പ്രചാരത്തിലുള്ള ഗതികവൈദ്യുതകോണ്‍ ഉച്ചഭാഷിണി (electro-dynamic cone loudspeaker) കണ്ടുപിടിച്ചു.

വിവിധയിനം ഉച്ചഭാഷിണികള്‍. ഉച്ചഭാഷിണികളെ പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി (direct radiator L.S.) ഹോണ്‍ ഉച്ചഭാഷിണി(horn L.S.) അയോണിക ഉച്ചഭാഷിണി (ionic L.S.) എന്നിങ്ങനെ മൂന്നായി തരംതിരിക്കാമെങ്കിലും ആദ്യത്തെ രണ്ടിനങ്ങളാണ്‌ കൂടുതല്‍ പ്രചാരത്തിലുള്ളത്‌.

1. പ്രത്യക്ഷവികിരക ഉച്ചഭാഷിണി. ഡയഫ്രമോ കോണോ ശബ്‌ദത്തെ നേരിട്ട്‌ അന്തരീക്ഷത്തിലേക്ക്‌ പ്രസരണം നടത്തുന്ന തരം ഉച്ചഭാഷിണിയാണ്‌ ഇത്‌.

2. ഗതികവൈദ്യുത ഉച്ചഭാഷിണി. ഉച്ചഭാഷിണിയുടെ മോട്ടോര്‍ ശക്തിയേറിയ ഒരു കാന്തം ആണ്‌. അത്‌ സ്ഥിരകാന്തമോ വൈദ്യുതകാന്തമോ ആകാം. ഇതിന്റെ കാന്തികമണ്ഡലത്തിലെ വൃത്താകൃതിയിലുള്ള ഒരു വായുവിടവില്‍ (circular air-gap) സ്വതന്ത്രമായി ചലിക്കാനുള്ള സൗകര്യത്തോടുകൂടി ഒരു നാദച്ചുരുള്‍ (voice coil) ഒരു പേപ്പര്‍ കോണുമായി ഘടിപ്പിച്ചിരിക്കുന്നു. ശബ്‌ദാവൃത്തി(audio frequency)യിലുള്ള വൈദ്യുതി നാദച്ചുരുളില്‍ക്കൂടി കടന്നുപോകുമ്പോള്‍ ചലിക്കുന്ന ഒരു കാന്തികമണ്ഡലം അതിനു ചുറ്റും സൃഷ്‌ടിക്കപ്പെടുന്നു. ചലിക്കുന്ന ഈ കാന്തികമണ്ഡലം ആദ്യത്തെ സ്ഥിരകാന്തിക മണ്ഡലവുമായി പ്രതിപ്രവര്‍ത്തിച്ച്‌ നാദച്ചുരുളിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനം പേപ്പര്‍കോണ്‍ മുഖേന വായുവിലേക്ക്‌ ശബ്‌ദതരംഗങ്ങളായി പ്രഷണം ചെയ്യപ്പെടുന്നു.

ചിത്രം 1ഗതികവൈദ്യുത ഉച്ചഭാഷിണി(സ്ഥിരാങ്കം)1. ഫ്രയിം 2. പേപ്പര്‍ കോണ്‍ 3. വോയിസ്‌ കോയില്‍ (നാദച്ചുരുള്‍)സ്‌പൈഡര്‍ 5. സ്ഥിരകാന്തം ചിത്രം 2 ഗതികവൈദ്യുത ഉച്ചഭാഷിണി(വൈദ്യുതകാന്തം)1. ഫീല്‍ഡ്‌കോയില്‍ 2. പേപ്പര്‍ കോണ്‍ 3. വോയിസ്‌ കോയില്‍(നാദച്ചുരുള്‍)

പ്രധാനമായി രണ്ടുവിധത്തിലുള്ള ഗതികവൈദ്യുത ഉച്ചഭാഷിണികള്‍ ഉണ്ട്‌. ഒന്നില്‍ മോട്ടോറായി ശക്തിയേറിയ ഒരു സ്ഥിരകാന്തവും (permanent magnet)മേറ്റേതില്‍ ഒരു വൈദ്യുതകാന്തവും (electro-magnet) ഉേപയോഗിക്കുന്നു. ചെറിയ ഉച്ചഭാഷിണികളില്‍ സ്ഥിരകാന്തം ഉപയോഗിക്കുന്നത്‌ ലാഭകരമാണ്‌. ഇടത്തരം അളവുകളില്‍ ഇവയുടെ വില ഏതാണ്ട്‌ സമമാണ്‌. വലിയ ഉച്ചഭാഷിണികളിലാകട്ടെ വൈദ്യുതകാന്തമാണ്‌ ലാഭകരം. എന്നാല്‍ അവയ്‌ക്കു വേണ്ടിവരുന്ന വൈദ്യുതവ്യയം പരിഗണിക്കുമ്പോള്‍ രണ്ടും ഒരുപോലെയാണെന്നു കാണാം. നാദച്ചുരുളുകള്‍ക്ക്‌ സാധാരണയായി വളരെ ചെറിയ രോധം (resistance)ആണുള്ളത്‌ (ഉദാ. 3 മുതല്‍ 20 വരെ ഓം). കൂടുതല്‍ രോധമുള്ള നാദച്ചുരുളുകള്‍ക്ക്‌ ക്ഷമത (efficiency) കുറവാണ്‌. ഗതികഉച്ചഭാഷിണികള്‍ക്ക്‌ ഉറപ്പും വിലക്കുറവുമുണ്ടായിരിക്കും. അവ എളുപ്പത്തില്‍ വിരൂപണ വിധേയമാകുന്നില്ല. വൈദ്യുതോര്‍ജത്തെ ശബ്‌ദോര്‍ജമാക്കി മാറ്റാനുള്ള സൗകര്യം അവയ്‌ക്ക്‌ കൂടുതല്‍ ഉണ്ട്‌.

3. കാന്തിക ആര്‍മെച്ചര്‍ ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണിയുടെ നാദച്ചുരുളില്‍ക്കൂടി വൈദ്യുതി കടത്തിവിടുമ്പോള്‍ ആര്‍മെച്ചറിന്റെ ഒരു വശത്ത്‌ കാന്തശക്തി കൂടുകയും മറുവശത്ത്‌ കുറയുകയും ചെയ്യുന്നു (തിരിച്ചും സംഭവിക്കുന്നു). കാന്തശക്തി കൂടുന്ന ഭാഗത്തേക്ക്‌ ആര്‍മെച്ചര്‍ നീങ്ങുന്നതിനൊപ്പം കോണ്‍ഡയഫ്രം ചലിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ വൈദ്യുതോര്‍ജം ശബ്‌ദോര്‍ജമായി മാറും. ഈ ഉച്ചഭാഷിണിയില്‍ നാദച്ചുരുള്‍ ചലിക്കുന്നില്ല. അതുകൊണ്ട്‌ വലിയ നാദച്ചുരുള്‍ ഘടിപ്പിക്കാന്‍ സാധിക്കും. വലിയ നാദച്ചുരുള്‍ ഉന്നതാവൃത്തി(high frequency))കളില്‍ കൂടുതല്‍ രോധം ഉണ്ടാക്കുന്നതിനാല്‍ ആ സന്ദര്‍ഭങ്ങളില്‍ നിമ്‌നാവൃത്തി(low frequency)കളിലുള്ള പ്രഷകം ആയി ഉപയോഗിക്കാന്‍ സാധിക്കും. എന്നാല്‍ ഇതിന്‌ ഒരു പരിധി ഉണ്ട്‌. നിമ്‌നാവൃത്തികളില്‍ ഒരു പ്രത്യേക ആവൃത്തിയില്‍ അനുനാദം (resonance) സംഭവിക്കുന്നതുകൊണ്ട്‌ അതില്‍ താഴെയുള്ള ആവൃത്തികളുടെ പ്രഷണത്തിന്‌ ഇവ അനുയോജ്യമല്ല. ഇത്തരം അനുനാദ-ആവൃത്തികള്‍ ശരിയായ രൂപകല്‌പനകൊണ്ട്‌ 100 ഹെര്‍ട്‌സ്‌വരെ താഴെകൊണ്ടുവരാന്‍ സാധിക്കും.

ചിത്രം 3 കാന്തിക ആര്‍മെച്ചര്‍ ഉച്ചഭാഷിണി1. ഉച്ചഭാഷിണി കോണ്‍ 2. ഉത്തോലകം 3. കാന്തം 4. ആര്‍മെച്ചര്‍

4. സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി. ഇത്തരം ഉച്ചഭാഷിണികളില്‍ സ്ഥിരവൈദ്യുത തത്ത്വങ്ങള്‍ (electrostatic principles) ഉപയോഗിക്കുന്നു. ഘടനാപരമായി ഇവയും സംധാരിത്രങ്ങള്‍ (capacitors)ആെണ്‌. ഇവയിലെ ഒരു ഇലക്‌ട്രാഡ്‌ ചലനാത്മകമായ ഒരു ഡയഫ്രമായി പ്രവര്‍ത്തിക്കുന്നു. വിരൂപണം കുറയ്‌ക്കാനും സംവേദകത കൂട്ടാനും വേണ്ടി രണ്ട്‌ ഇലക്‌ട്രാഡുകള്‍ക്കും ഇടയ്‌ക്ക്‌ ഒരു നേര്‍കറണ്ട്‌ അഭിനതിവോള്‍ട്ടത (direct current bias potential) പ്രയോഗിക്കുന്നു. ഇതിന്‌ ഉപരിയായി സിഗ്നല്‍കറണ്ട്‌ പ്രയോഗിക്കുമ്പോള്‍ ഡയഫ്രത്തെ ചലിപ്പിക്കുന്ന ഒരു ശക്തി ഉണ്ടാകുന്നു. ഡയഫ്രത്തിന്റെ ചലനം ശബ്‌ദമായി മാറുകയും ചെയ്യുന്നു. വിലക്കുറവും വിരൂപണസാധ്യതക്കുറവും ആണ്‌ സ്ഥിരവൈദ്യുതഉച്ചഭാഷിണികളുടെ മേന്മ എങ്കിലും ക്ഷമത കുറവാണ്‌. വലിയ നേര്‍കറണ്ട്‌ വോള്‍ട്ടത കൊണ്ടുള്ള അപകടസാധ്യതയും ഇവയ്‌ക്ക്‌ കൂടുതല്‍ ഉണ്ട്‌. സാധാരണയായി ഇവ ഉന്നതാവൃത്തികളിലാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌.

ചിത്രം 4 സ്ഥിരവൈദ്യുത ഉച്ചഭാഷിണി1. ഒന്നാം ഇലക്‌ട്രാഡ്‌-ലോഹം പൂശിയ പ്ലാസ്റ്റിക്‌ ഡയഫ്രം 2. രണ്ടാം ഇലക്‌ട്രാഡ്‌ 3. വായു അറകള്‍

5. ക്രിസ്റ്റല്‍ ഉച്ചഭാഷിണി. ഇവ പീസോവൈദ്യുത തത്ത്വം (piezo-electric principle)അനുസരിച്ച്‌ പ്രവര്‍ത്തിക്കുന്നു. രണ്ടു ക്രിസ്റ്റലുകള്‍ ഒന്നിനുപരിയായി മറ്റൊന്നു ചേര്‍ത്ത്‌ അവയില്‍നിന്ന്‌ രണ്ടു ബന്ധങ്ങള്‍ (connections)വെളിയിലേക്ക്‌ എടുത്തിരിക്കുന്നു. ക്രിസ്റ്റലുകള്‍ ഉത്തോലകം (lever)) മുഖേന ഒരു ഡയഫ്രവുമായി ബന്ധിച്ചിരിക്കുന്നു. ക്രിസ്റ്റലുകളുടെ ചലനം വളരെ ലഘുവായതുകൊണ്ട്‌ കൂടുതല്‍ ശബ്‌ദം കിട്ടാന്‍ ഇത്തരമൊരു ക്രമീകരണം ആവശ്യമാണ്‌. ക്രിസ്റ്റലുകളില്‍ ഒരു പ്രത്യേക അക്ഷത്തില്‍ക്കൂടി വൈദ്യുതി പ്രവഹിപ്പിക്കുമ്പോള്‍ അതിനു ലംബമായ അക്ഷ(axis)ത്തെില്‍ക്കൂടി അവയ്‌ക്ക്‌ ചലനം സംഭവിക്കുന്നു. ഈ തത്ത്വമനുസരിച്ച്‌ ബാഹ്യബന്ധങ്ങളില്‍(external connections))ക്കെൂടി സിഗ്നല്‍ പ്രവഹിക്കുമ്പോള്‍ യഥാതഥമായ ചലനങ്ങള്‍ ഉത്തോലകദണ്ഡില്‍ പ്രത്യക്ഷമാകുന്നു. ഇവ ഡയഫ്രത്തെ ചലിപ്പിച്ച്‌ ശബ്‌ദം ഉണ്ടാക്കുകയും ചെയ്യുന്നു. ഉത്തോലകങ്ങള്‍ ഉപയോഗിക്കുന്നതുകൊണ്ട്‌ ഉന്നതാവൃത്തികളില്‍ ഈ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കാന്‍ സാധ്യമല്ല.

ചിത്രം 5 ക്രിസ്റ്റല്‍ ഉച്ചഭാഷിണി 1. കോണ്‍ 2. ക്രിസ്റ്റലുകള്‍ 3. ബാഹ്യടെര്‍മിനലുകള്‍ 4. ഉത്തോലകം
ചിത്രം 6. തെര്‍മോഫോണ്‍ 1. ബാഹ്യടെര്‍മിനലുകള്‍ 2. പ്ലാറ്റിനം തകിട്‌ 3. ടെര്‍മിനല്‍ ഉറപ്പ്‌ 4. ഫൈബര്‍ അടിസ്ഥാനം

6. തെര്‍മോഫോണ്‍. ഇതില്‍ കനം കുറഞ്ഞ ഒരു വൈദ്യുതവാഹിയില്‍ക്കൂടി വൈദ്യുതി ഒഴുകുമ്പോള്‍ ഉണ്ടാകുന്ന ചൂടും തത്‌ഫലമായി ഉണ്ടാകുന്ന ചലനങ്ങളും ഉപയോഗപ്പെടുത്തുകയാണു ചെയ്യുന്നത്‌. തെര്‍മോഫോണില്‍ വളരെ കനംകുറഞ്ഞ ഒരു പ്ലാറ്റിനം തകിട്‌ രണ്ടറ്റത്തും ബന്ധിപ്പിച്ചനിലയില്‍ സ്ഥിതിചെയ്യുന്നു. ഒരു പ്രത്യാവര്‍ത്തികറണ്ട്‌ ഇതില്‍ക്കൂടി ഒഴുകുമ്പോള്‍ തകിട്‌ ചൂടാകുകയും കമ്പനം (vibration)കൊള്ളുകയും ചെയ്യുന്നു. ഈ കമ്പനങ്ങള്‍ സമീപത്തുള്ള വായുവിലേക്കു പ്രസരിച്ച്‌ ശബ്‌ദമായി മാറുന്നു. കമ്പി എത്രത്തോളം കനം കുറഞ്ഞിരിക്കുന്നുവോ, അത്രയും എളുപ്പം കമ്പിയില്‍ സിഗ്നല്‍കറണ്ടിനനുസരിച്ചുള്ള കമ്പനങ്ങളുണ്ടാകുന്നു. പരീക്ഷണശാലകളില്‍ മൈക്രാഫോണുകള്‍ അംശാങ്കനം (calibration) ചെയ്യാന്‍ ഇവ ഉപയോഗിക്കുന്നു.

7. ഹോണ്‍ ഉച്ചഭാഷിണികള്‍. ഉന്നതമര്‍ദത്തിലും ലഘുവേഗത്തിലുമുള്ള ശബ്‌ദോര്‍ജത്തെ ലഘുമര്‍ദത്തിലും ഉന്നതവേഗത്തിലുമുള്ള ഊര്‍ജമാക്കി മാറ്റുവാന്‍ ഹോണ്‍ ഉച്ചഭാഷിണി ഉപയോഗിക്കുന്നു. ഹോണുകള്‍ ഒരു ഡയഫ്രത്തിനോടോ കോണിനോടോ ചേര്‍ത്താണ്‌ ഉപയോഗിക്കുന്നത്‌. ഇങ്ങനെ ഉപയോഗിക്കുന്ന ഹോണുകള്‍ സാധാരണഗതിയില്‍ ഒരു ഡയഫ്രം നേരിടുന്ന ലോഡ്‌ (load)വര്‍ധിപ്പിച്ച്‌ ഉച്ചഭാഷിണിയുടെ കാര്യക്ഷമത മെച്ചപ്പെടുത്തുകയും തദ്വാരാ വിരൂപണം കുറയ്‌ക്കുകയും ചെയ്യുന്നു. ഹോണുകള്‍ അവയുടെ ജ്യാമിതീയരൂപമനുസരിച്ച്‌ കോണികം (conical) എക്‌സ്‌പൊണന്‍ഷ്യല്‍(exponential), പാരാബോളികം(parabolic) എന്നിങ്ങനെ വിവിധ രൂപങ്ങളിലുണ്ട്‌. എക്‌സ്‌പൊണന്‍ഷ്യല്‍ ആണ്‌ ഇവയില്‍ ഏറ്റവും ഉത്തമമായിട്ടുള്ളത്‌.

ചിത്രം 7. ഹോണ്‍ ഉച്ചഭാഷിണി 1. ഡയഫ്രം 2. കഴുത്ത്‌ 3. വായ്‌

ഹോണുകളുടെ പ്രവര്‍ത്തനം. ചലിക്കുന്ന ഒരു ഡയഫ്രം അതിനു മുമ്പിലുള്ള വായുവിനെ ചലിപ്പിക്കുന്നു. ഈ ചലനംമൂലമുണ്ടാകുന്ന വായുമര്‍ദം ഡയഫ്രത്തില്‍ പ്രതിപ്രവര്‍ത്തിക്കുന്നു. ഈ മര്‍ദം ഡയഫ്രത്തിന്റെ ഘടന അനുസരിച്ച്‌ വളരെ ലഘുവായ ഒന്നാണ്‌. അതിനാല്‍ ഡയഫ്രത്തിന്മേലുള്ള ലോഡും അത്‌ ചെയ്യുന്ന ജോലിയും കുറയുന്നു. തന്മൂലം വെളിയിലേക്ക്‌ പ്രസരിക്കുന്ന ശബ്‌ദോര്‍ജത്തിന്റെ അളവ്‌ കുറയുന്നു.

ചിത്രം 8. മടക്കിയ ഹോണ്‍ 1. ഹോണ്‍ ഡയഫ്രം 2. ശബ്‌ദം സഞ്ചരിക്കുന്ന വഴി

ഡയഫ്രത്തിനോട്‌ ഒരു ഹോണ്‍ ഘടിപ്പിക്കുമ്പോള്‍ അതിനു മുമ്പുള്ള വായുസ്ഥലം കുറയുന്നു. ഹോണിന്റെ കഴുത്തിനെ(throat) അേപേക്ഷിച്ച്‌ ഡയഫ്രത്തിന്‌ വിസ്‌താരം കൂടുമെങ്കില്‍ ഡയഫ്രത്തിന്മേല്‍ കൂടുതല്‍ മര്‍ദം ഏല്‍ക്കുകയും അതനുസരിച്ച്‌ ഡയഫ്രം കൂടുതല്‍ പ്രവര്‍ത്തിക്കുകയും ചെയ്യുന്നു. ഇങ്ങനെ ഡയഫ്രം ലോഡ്‌ ചെയ്യപ്പെടുന്നു. ഇപ്രകാരം ഉണ്ടാകുന്ന മര്‍ദം കോണിന്റെ വായ്‌ഭാഗത്തുകൂടി അന്തരീക്ഷത്തിലേക്കു വ്യാപിക്കുന്നു. ഹോണിന്റെ കഴുത്ത്‌ എത്രത്തോളം ചെറുതാകുമോ അത്രത്തോളം കാര്യക്ഷമത കൂടുന്നതാണ്‌. അതുപോലെ വായ്‌ എത്രത്തോളം വലുതാകുമോ അത്രത്തോളം പ്രതിഫലനം (refle-ction) കുറയ്‌ക്കാന്‍ കഴിയും. എന്നാല്‍ സാങ്കേതികമായ ചില തടസ്സങ്ങളുള്ളതുകൊണ്ട്‌ ഒരു പരിധിവരെ മാത്രമേ രണ്ടും വ്യത്യാസപ്പെടുത്താന്‍ കഴിയൂ.

മടക്കിയ ഹോണ്‍ (Folded horn). ഹോണിന്റെ കഴുത്ത്‌ തീരെ ചെറുതാകുകയും വായ്‌ വളരെ വലുതാകുകയും ചെയ്യുമ്പോള്‍ ഗണിതശാസ്‌ത്രസിദ്ധാന്തമനുസരിച്ച്‌ നീളം വളരെ കൂട്ടേണ്ടിവരും. താത്ത്വികമായി ഈ നീളം 5 മുതല്‍ 10 വരെ മീറ്റര്‍ ആകാം. ഇങ്ങനെയുള്ള ഹോണുകള്‍ ഉണ്ടാക്കാന്‍ പ്രായോഗികവിഷമങ്ങളുള്ളതുകൊണ്ട്‌ ഹോണ്‍ മടക്കിയ രൂപത്തില്‍ (നീളം കൂട്ടി) ഉപയോഗിക്കുന്നു.

8. ബഹു-ഉച്ചഭാഷിണി (Multiple L.S.). ഒന്നിലധികം ഉച്ചഭാഷിണികള്‍ ചേര്‍ത്തുണ്ടാക്കുന്ന സംവിധാനം. ശബ്‌ദം ഒരേ ദിശയിലേക്കു വിടുന്നത്‌ ആവശ്യമായിവരുമ്പോള്‍ ബഹു-ഉച്ചഭാഷിണിസംവിധാനം ഉപയോഗിക്കാം. ഒന്നില്‍ക്കൂടുതല്‍ ഉച്ചഭാഷിണികള്‍ ഒരേ ദിശയിലേക്കു തിരിച്ചുവയ്‌ക്കുമ്പോള്‍ ആ ഭാഗത്തേക്ക്‌ ശബ്‌ദപ്രസരണം കൂടുന്നു. ആഡിറ്റോറിയങ്ങളിലും മറ്റും ഇപ്രകാരമുള്ള സംവിധാനങ്ങള്‍ ഉപയോഗിക്കാവുന്നതാണ്‌.

ചിത്രം 9. ബഹുഉച്ചഭാഷിണി സംവിധാനം A. പാര്‍ശ്വവീക്ഷണം B. മുന്‍വീക്ഷണം

9. ഹൈ ഫിഡലിറ്റി ഉച്ചഭാഷിണി(High fidelity L.S.). ഏതുതരം ഉച്ചഭാഷിണിയായാലും ശബ്‌ദത്തിന്റെ എല്ലാ ആവൃത്തികളിലും തൃപ്‌തികരമായി പ്രവര്‍ത്തനക്ഷമമാകില്ല. അതിനാല്‍ സാധാരണ റേഡിയോയിലും അതുപോലുള്ള മറ്റുപകരണങ്ങളിലും ശബ്‌ദാവൃത്തിയുടെ മധ്യഭാഗത്ത്‌ (400 മുതല്‍ 600 വരെ ഹെര്‍ട്‌സ്‌) സാമാന്യം തൃപ്‌തികരമായി പ്രവര്‍ത്തിക്കുന്ന ഉച്ചഭാഷിണികളാണ്‌ ഉപയോഗിക്കാറുള്ളത്‌. എന്നാല്‍ ഒരു ഹൈ ഫിഡലിറ്റി സംവിധാനത്തില്‍ ശബ്‌ദത്തിന്റെ എല്ലാ മേഖകളിലുമുള്ള ആവൃത്തികള്‍ (30 ഹെര്‍ട്‌സ്‌ മുതല്‍ 15 കിലോ ഹെര്‍ട്‌സ്‌ വരെ) ആവശ്യമാണെന്നതുകൊണ്ട്‌ ഒന്നില്‍ക്കൂടുതല്‍ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിക്കുന്നു. ഇവ ശബ്‌ദാവൃത്തിയുടെ വിവിധ മേഖലകളില്‍ മാത്രം പ്രവര്‍ത്തിക്കുന്നവയായിരിക്കും. നിമ്‌നാവൃത്തിയില്‍ പ്രവര്‍ത്തിക്കുന്നവ വൂഫര്‍ (woofer) എന്നും ഉന്നതാവൃത്തികളില്‍ പ്രവര്‍ത്തിക്കുന്നവ ട്വീറ്റര്‍ (tweeter) എന്നും അറിയപ്പെടുന്നു. നിമ്‌നാവൃത്തിയിലെ ശബ്‌ദത്തിന്‌ കൂടുതല്‍ ശക്തിയുള്ളതിനാല്‍ വൂഫര്‍ വലിയ വ്യാസത്തില്‍ ബലവത്തായി നിര്‍മിച്ചിരിക്കുന്നു. ട്വീറ്ററാകട്ടെ, ചെറുതും കട്ടിയുള്ളതുമായ കോണ്‍കൊണ്ടാണ്‌ ഉണ്ടാക്കിയിരിക്കുന്നത്‌. ഇതിലെ സംധാരിത്രം(capacitor) ട്വീറ്ററിലേക്ക്‌ നിമ്‌നാവൃത്തിയിലുള്ള വൈദ്യുതിപ്രവാഹം തടയുന്നു.

ചിത്രം 10. ഹൈ ഫിഡലിറ്റി സംവിധാനം 1. വൂഫര്‍ 2. ട്വീറ്റര്‍ 3. കണ്ടന്‍സര്‍

ചിലപ്പോള്‍ മൂന്ന്‌ ഉച്ചഭാഷിണികള്‍ ഉപയോഗിച്ച്‌ ഹൈ ഫിഡലിറ്റി സംവിധാനം ഉണ്ടാക്കുന്നു. ഉന്നതാവൃത്തികളിലുള്ള ശബ്‌ദം വളരെയധികം ദിശാത്മകമായതിനാല്‍ ഇത്തരം സന്ദര്‍ഭങ്ങളില്‍ രണ്ടു വശത്തേക്കു തിരിച്ചു വച്ചിട്ടുള്ള രണ്ടു ട്വീറ്ററുകള്‍ ഉപയോഗിക്കുന്നു. വേറെ ചില സന്ദര്‍ഭങ്ങളില്‍ നാല്‌ ഉച്ചഭാഷിണികളടങ്ങിയ ഒരു യൂണിറ്റ്‌ ഉപയോഗിക്കാറുണ്ട്‌. ഇത്തരം ഒരു സംവിധാനത്തില്‍ ഒരു വൂഫറും രണ്ട്‌ ട്വീറ്ററുകളും മധ്യാവൃത്തികളില്‍ പ്രവര്‍ത്തിക്കുന്ന ഒരു സാധാരണ ഉച്ചഭാഷിണിയും ഉണ്ടായിരിക്കും. വൂഫര്‍ 30 മുതല്‍ 400 വരെ ഹെര്‍ട്‌സും, സാധാരണ ഉച്ചഭാഷിണി 400 മുതല്‍ 6000 വരെ ഹെര്‍ട്‌സും, ട്വീറ്ററുകള്‍ 6,000 മുതല്‍ 15,000 വരെ ഹെര്‍ട്‌സും ആവൃത്തികളില്‍ വളരെ തൃപ്‌തികരമായി പ്രവര്‍ത്തിക്കുന്നു.

(ബി. സോമനാഥന്‍ നായര്‍)

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍