This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
ദ് മ്വാവ്റ്, അബ്രാം (1667 - 1754)
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
(New page: ദ് മ്വാവ്റ്, അബ്രാം (1667 - 1754) ഉല ങീശ്ൃല, അയൃമവമാ ഫ്രഞ്ച് ഗണിതശാസ്ത്രജ്ഞന്...) |
|||
(ഇടക്കുള്ള 2 പതിപ്പുകളിലെ മാറ്റങ്ങള് ഇവിടെ കാണിക്കുന്നില്ല.) | |||
വരി 1: | വരി 1: | ||
- | ദ് മ്വാവ്റ്, അബ്രാം (1667 - 1754) | + | =ദ് മ്വാവ്റ്, അബ്രാം (1667 - 1754)= |
+ | De Moivre,Abraham | ||
- | + | [[Image:1947b Abraham de moivre.png|thumb|250x250px|right|അബ്രാം ദ് മ്വാവ്റ്]]ഫ്രഞ്ച് ഗണിതശാസ്ത്രജ്ഞന്. സാംഖ്യികം, ത്രികോണമിതി, സമ്മിശ്രസംഖ്യകള് എന്നീ വിജ്ഞാനമേഖലകളില് ഈടുറ്റ സംഭാവനകള് നല്കി. | |
- | + | 1667 മേയ് 26-ന് പാരിസ് പ്രാന്തത്തിലുള്ള വിട്രീയില് ജനിച്ചു. സ്വന്തം മതവിഭാഗമായ പ്രൊട്ടസ്റ്റന്റുകാരുടെ സ്കൂളില് തുടങ്ങി സിദാന്, സോമ്യുര്, പാരിസ് എന്നിവിടങ്ങളിലായി ഉന്നത വിദ്യാഭ്യാസം പൂര്ത്തിയാക്കി. പ്രൊട്ടസ്റ്റന്റുകാര്ക്ക് ഫ്രാന്സില് ഏര്പ്പെടുത്തിയിരുന്ന വിലക്കുകള്മൂലം ഇംഗ്ളണ്ടില് ജോലി തേടേണ്ടിവന്ന ദ് മ്വാവ്റ്, ശിഷ്ടജീവിതം ആ രാജ്യത്താണു നയിച്ചത്. പ്രഗല്ഭനായ ഗണിതാധ്യാപകന് ആയിരുന്നു ഇദ്ദേഹം. | |
- | + | ഇദ്ദേഹത്തിന്റെ ആദ്യകാല ഗവേഷണങ്ങള് സംഭാവ്യതാസിദ്ധാന്തം (Probability theory), ജ്യാമിതി, കലനം (Calculus), ഗതികം എന്നിവയിലായിരുന്നു. പ്രാമാണിക വിതരണം (normal distribution), സംഭാവ്യതാപ്പിശക് (probable error) തുടങ്ങിയ സാംഖ്യികീയാശയങ്ങള് ആവിഷ്കരിച്ചത് ദ് മ്വാവ്റ് ആണ് (1733). സംഭാവ്യതാ ഘനത്വഫലനം (probability density function) സൂചിപ്പിക്കുന്നതിന് സാധാരണയായി ഉപയോഗിച്ചുവരുന്ന മാതൃകയാണ് പ്രാമാണിക വിതരണം. പ്രകൃതിയിലെ പല സ്വഭാവചര്യകള്ക്കും അനുഗുണമാണ് ഈ മാതൃക. കലനത്തിലെ നിയമങ്ങളുപയോഗിച്ച് സംഭാവ്യതാസിദ്ധാന്തം ഇദ്ദേഹം പരിഷ്കരിച്ചിട്ടുണ്ട്. | |
- | + | ത്രികോണമിതിയിലെ പ്രധാന പ്രമേയങ്ങളിലൊന്നാണ് ദ് മ്വാവ്റ് പ്രമേയം (De Moiver's theorem). സമ്മിശ്ര സംഖ്യകളെ സംബന്ധിച്ച തത്ത്വങ്ങള് ത്രികോണമിതീയ ഫലനങ്ങള്ക്കും ബാധകമാക്കുന്നതാണ് ഈ പ്രമേയം. n ഏതെങ്കിലും ഒരു പരിമേയ സംഖ്യയും r മാപാങ്ക(modulus)വുമാണെങ്കില്, | |
- | + | [r(cosθ+i sinθ)]<sup>n</sup>=r<sup>n</sup>(cos n θ+i sin n θ) എന്നതാണ് ഈ പ്രമേയം. ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞനായ റോജര് കോട്സ് ആവിഷ്കരിച്ച കോട്സ് പ്രമേയത്തിന്റെ സാമാന്യവത്കരണമാണിത്. | |
- | + | ഇദ്ദേഹത്തിന്റെ പ്രധാനകൃതികളാണ് ഡോക്ട്രിന് ഒഫ് ചാന്സസ് (1718) (Doctrine of Chances), അന്വിയിറ്റീസ് അപാണ് ലൈവ്സ് (1725) (Annuities upon lives), മിസലേനി അനലിറ്റിക്ക (1730) (Miscellanea Analytica) എന്നിവ. ഗണിതപ്രശ്നങ്ങള് നിര്ധാരണം നടത്തുന്നതില് മികച്ച അവഗാഹം ഉണ്ടായിരുന്ന ദ് മ്വാവ്റ് ന്യൂട്ടന്, ബെര്ണോളി, ഹാലി തുടങ്ങിയ വിജ്ഞാനികളുമായി സുഹൃദ്ബന്ധം പുലര്ത്തിയിരുന്നു. അനന്ത സൂക്ഷ്മ കലന(Infinitesimal calculus)ത്തിന്റെ ഉപജ്ഞാതാവ് ന്യൂട്ടനോ ലൈബ്നിറ്റ്സോ എന്ന പ്രശ്നത്തിന്മേല് തര്ക്ക പരിഹാരക്കമ്മിറ്റിയുടെ തലവനായി ദ് മ്വാവ്റ് നിയോഗിക്കപ്പെട്ടു. (ഈ സമിതിയുടെ അന്തിമ തീരുമാനം ന്യൂട്ടന് അനുകൂലമായിരുന്നു.) 1697-ല് റോയല് സൊസൈറ്റി ഫെലോ ആയിരുന്നു ഇദ്ദേഹം. | |
- | + | 1754 ന. 24-ന് ലണ്ടനില് ദ് മ്വാവ്റ് നിര്യാതനായി. | |
- | + | ||
- | + |
Current revision as of 04:17, 5 മാര്ച്ച് 2009
ദ് മ്വാവ്റ്, അബ്രാം (1667 - 1754)
De Moivre,Abraham
ഫ്രഞ്ച് ഗണിതശാസ്ത്രജ്ഞന്. സാംഖ്യികം, ത്രികോണമിതി, സമ്മിശ്രസംഖ്യകള് എന്നീ വിജ്ഞാനമേഖലകളില് ഈടുറ്റ സംഭാവനകള് നല്കി.1667 മേയ് 26-ന് പാരിസ് പ്രാന്തത്തിലുള്ള വിട്രീയില് ജനിച്ചു. സ്വന്തം മതവിഭാഗമായ പ്രൊട്ടസ്റ്റന്റുകാരുടെ സ്കൂളില് തുടങ്ങി സിദാന്, സോമ്യുര്, പാരിസ് എന്നിവിടങ്ങളിലായി ഉന്നത വിദ്യാഭ്യാസം പൂര്ത്തിയാക്കി. പ്രൊട്ടസ്റ്റന്റുകാര്ക്ക് ഫ്രാന്സില് ഏര്പ്പെടുത്തിയിരുന്ന വിലക്കുകള്മൂലം ഇംഗ്ളണ്ടില് ജോലി തേടേണ്ടിവന്ന ദ് മ്വാവ്റ്, ശിഷ്ടജീവിതം ആ രാജ്യത്താണു നയിച്ചത്. പ്രഗല്ഭനായ ഗണിതാധ്യാപകന് ആയിരുന്നു ഇദ്ദേഹം.
ഇദ്ദേഹത്തിന്റെ ആദ്യകാല ഗവേഷണങ്ങള് സംഭാവ്യതാസിദ്ധാന്തം (Probability theory), ജ്യാമിതി, കലനം (Calculus), ഗതികം എന്നിവയിലായിരുന്നു. പ്രാമാണിക വിതരണം (normal distribution), സംഭാവ്യതാപ്പിശക് (probable error) തുടങ്ങിയ സാംഖ്യികീയാശയങ്ങള് ആവിഷ്കരിച്ചത് ദ് മ്വാവ്റ് ആണ് (1733). സംഭാവ്യതാ ഘനത്വഫലനം (probability density function) സൂചിപ്പിക്കുന്നതിന് സാധാരണയായി ഉപയോഗിച്ചുവരുന്ന മാതൃകയാണ് പ്രാമാണിക വിതരണം. പ്രകൃതിയിലെ പല സ്വഭാവചര്യകള്ക്കും അനുഗുണമാണ് ഈ മാതൃക. കലനത്തിലെ നിയമങ്ങളുപയോഗിച്ച് സംഭാവ്യതാസിദ്ധാന്തം ഇദ്ദേഹം പരിഷ്കരിച്ചിട്ടുണ്ട്.
ത്രികോണമിതിയിലെ പ്രധാന പ്രമേയങ്ങളിലൊന്നാണ് ദ് മ്വാവ്റ് പ്രമേയം (De Moiver's theorem). സമ്മിശ്ര സംഖ്യകളെ സംബന്ധിച്ച തത്ത്വങ്ങള് ത്രികോണമിതീയ ഫലനങ്ങള്ക്കും ബാധകമാക്കുന്നതാണ് ഈ പ്രമേയം. n ഏതെങ്കിലും ഒരു പരിമേയ സംഖ്യയും r മാപാങ്ക(modulus)വുമാണെങ്കില്,
[r(cosθ+i sinθ)]n=rn(cos n θ+i sin n θ) എന്നതാണ് ഈ പ്രമേയം. ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞനായ റോജര് കോട്സ് ആവിഷ്കരിച്ച കോട്സ് പ്രമേയത്തിന്റെ സാമാന്യവത്കരണമാണിത്.
ഇദ്ദേഹത്തിന്റെ പ്രധാനകൃതികളാണ് ഡോക്ട്രിന് ഒഫ് ചാന്സസ് (1718) (Doctrine of Chances), അന്വിയിറ്റീസ് അപാണ് ലൈവ്സ് (1725) (Annuities upon lives), മിസലേനി അനലിറ്റിക്ക (1730) (Miscellanea Analytica) എന്നിവ. ഗണിതപ്രശ്നങ്ങള് നിര്ധാരണം നടത്തുന്നതില് മികച്ച അവഗാഹം ഉണ്ടായിരുന്ന ദ് മ്വാവ്റ് ന്യൂട്ടന്, ബെര്ണോളി, ഹാലി തുടങ്ങിയ വിജ്ഞാനികളുമായി സുഹൃദ്ബന്ധം പുലര്ത്തിയിരുന്നു. അനന്ത സൂക്ഷ്മ കലന(Infinitesimal calculus)ത്തിന്റെ ഉപജ്ഞാതാവ് ന്യൂട്ടനോ ലൈബ്നിറ്റ്സോ എന്ന പ്രശ്നത്തിന്മേല് തര്ക്ക പരിഹാരക്കമ്മിറ്റിയുടെ തലവനായി ദ് മ്വാവ്റ് നിയോഗിക്കപ്പെട്ടു. (ഈ സമിതിയുടെ അന്തിമ തീരുമാനം ന്യൂട്ടന് അനുകൂലമായിരുന്നു.) 1697-ല് റോയല് സൊസൈറ്റി ഫെലോ ആയിരുന്നു ഇദ്ദേഹം.
1754 ന. 24-ന് ലണ്ടനില് ദ് മ്വാവ്റ് നിര്യാതനായി.