This site is not complete. The work to converting the volumes of സര്വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.
Reading Problems? see Enabling Malayalam
ടാന്ജെന്റ്
സര്വ്വവിജ്ഞാനകോശം സംരംഭത്തില് നിന്ന്
(→ടാന്ജെന്റ്) |
|||
(ഇടക്കുള്ള ഒരു പതിപ്പിലെ മാറ്റം ഇവിടെ കാണിക്കുന്നില്ല.) | |||
വരി 1: | വരി 1: | ||
=ടാന്ജെന്റ്= | =ടാന്ജെന്റ്= | ||
- | |||
Tanget | Tanget | ||
വരി 18: | വരി 17: | ||
'''ടാന്ജെന്റ് ഫലനം (tangent function).''' സമകോണിക കാര്ട്ടീഷ്യന് തലത്തില് P(x,y) ഏതെങ്കിലും ബിന്ദുവും | '''ടാന്ജെന്റ് ഫലനം (tangent function).''' സമകോണിക കാര്ട്ടീഷ്യന് തലത്തില് P(x,y) ഏതെങ്കിലും ബിന്ദുവും | ||
- | ∠ XOP = A യും ആയാല് അ യുടെ ടാന്ജെന്റ് ഫലനം <math>tan A = \frac{ y}{x}</math> എന്ന് എഴുതുന്നു. A-യ്ക്ക് മാറ്റം വരുന്നതനുസരിച്ച് tan A യുടെ വിലയും മാറിക്കൊണ്ടിരിക്കും. ഉദാഹരണത്തിന് tan 0°= 0 ; tan 45° = 1;tan 90°= & | + | ∠ XOP = A യും ആയാല് അ യുടെ ടാന്ജെന്റ് ഫലനം <math>tan A = \frac{ y}{x}</math> എന്ന് എഴുതുന്നു. A-യ്ക്ക് മാറ്റം വരുന്നതനുസരിച്ച് tan A യുടെ വിലയും മാറിക്കൊണ്ടിരിക്കും. ഉദാഹരണത്തിന് tan 0°= 0 ; tan 45° = 1;tan 90°= ∞.ഏതെങ്കിലുമൊരു ത്രികോണം ABC യില് കോണങ്ങള് A, B, C യുടെ എതിര്വശങ്ങള് a,b,c ആയാല് |
<math> tan \frac{B-C}{2} =\frac{b-c}{b+c}Cot\frac{A}{2}</math> | <math> tan \frac{B-C}{2} =\frac{b-c}{b+c}Cot\frac{A}{2}</math> |
Current revision as of 09:39, 18 ഡിസംബര് 2008
ടാന്ജെന്റ്
Tanget
ഒരു വക്രത്തിലെ ഒരു ബിന്ദു മാത്രം ഉള്ക്കൊള്ളുന്ന രേഖയാണ് വക്രത്തിന്റെ ആ ബിന്ദുവിലെ ടാന്ജെന്റ്. ഇത് സ്പര്ശകം അഥവാ സ്പര്ശരേഖ (tangent line) എന്നും അറിയപ്പെടുന്നു. വക്രത്തില് ഒരു ബിന്ദുവിലുള്ള സ്പര്ശകം ആ ബിന്ദുവിലൂടെയുള്ള ഏതെങ്കിലും ഛേദകരേഖ(secant)യുടെ സീമാന്തസ്ഥാന (limiting position)മായി കരുതാവുന്നതാണ്.
ദ്വിവിമീയ സ്പേസില് y=f (x) എന്ന വക്രത്തിലെ P(x,y) എന്ന ബിന്ദുവിലെ സ്പര്ശകം X-അക്ഷത്തിന്റെ ധനാത്മകദിശയുമായി ചരിഞ്ഞിരിക്കുന്ന കോണത്തിന്റെ അളവ് θആയാല് tanθ=f '(x).Tan θ യെ സ്പര്ശകത്തിന്റെ ചരിവ് (slope) എന്നു പറയുന്നു. ചരിവിനെ കുറിക്കാന് 'm' എന്ന പ്രതീകമുപയോഗിച്ചാല് m = f ' (x) എന്നു കിട്ടുന്നു. വക്രത്തിലെ (x1, y1) എന്ന ബിന്ദുവിലുള്ള സ്പര്ശകത്തിന്റെ സമീകരണമാണ് y - y1 = f ' (x1) (x-x1).
ഉദാഹരണമായി x2 + y2 = a2 എന്ന വൃത്തത്തിലെ (x1, y1) എന്ന ബിന്ദുവില് വരയ്ക്കുന്ന സ്പര്ശകത്തിന്റെ സമീകരണമാണ് xx1 + yy1 = a2. പരാബൊളയുടെ മാനക സമീകരണം y2 = 4ax. ഇതിലെ (x1, y1) എന്ന ബിന്ദുവിലുള്ള സ്പര്ശകത്തിന്റെ സമീകരണം yy1 = 2a (x + x1) ആണ്.
ഒരു വക്രത്തിലെ P (x,y) എന്ന ബിന്ദുവിലെ സ്പര്ശകം X അക്ഷത്തെ T എന്ന ബിന്ദുവില് പ്രതിച്ഛേദിച്ചാല് P യും T യും തമ്മിലുള്ള ദൂരത്തെ സ്പര്ശക ദൂരം (length of the tangent) എന്നു പറയുന്നു.
സ്പര്ശതലം (tangent plane). ഒരു പ്രതല(surface)ത്തിലുള്ള P എന്ന ബിന്ദുവില് ഒരു രേഖ സ്പര്ശകമാകണമെങ്കില് ആ ബിന്ദുവില്ക്കൂടി കടന്നുപോകുന്ന ഒരു വക്രത്തിന് (പ്രതലത്തിലുള്ളത്) ഈ രേഖ സ്പര്ശകമായിരിക്കണം. p യില്ക്കൂടി കടന്നുപോകുന്ന എല്ലാ സ്പര്ശകങ്ങളും ഉള്ള സമതലത്തെ സ്പര്ശതലം എന്നു പറയുന്നു. f (x,y,z) = 0 എന്ന പ്രതലത്തിലെ (x 1,y1,z1) എന്ന ബിന്ദുവിലെ സ്പര്ശതലത്തിന്റെ സമീകരണമാണ് f1(x1,y1,z1) (x - x1) + f2 (x1,y1,z1) (y - y11) + f3 (x1,y1,z1) (z-z11)=0.
ഇതില്f1,f2,f3എന്നിവ(x1,y1,z1)ലെ f ന്റെ x,y,z കൊണ്ടുള്ള ആംശിക (partial) അവകലജങ്ങളാണ്. ഉദാഹരണത്തിന് x2 + y2 +z2 = a2 എന്ന ഗോളത്തിന്റെ (x1y1z1) എന്ന ബിന്ദുവിലെ സ്പര്ശതലമാണ് x x1 + yy1 + zz1 = a2.
ടാന്ജെന്റ് ഫലനം (tangent function). സമകോണിക കാര്ട്ടീഷ്യന് തലത്തില് P(x,y) ഏതെങ്കിലും ബിന്ദുവും ∠ XOP = A യും ആയാല് അ യുടെ ടാന്ജെന്റ് ഫലനം എന്ന് എഴുതുന്നു. A-യ്ക്ക് മാറ്റം വരുന്നതനുസരിച്ച് tan A യുടെ വിലയും മാറിക്കൊണ്ടിരിക്കും. ഉദാഹരണത്തിന് tan 0°= 0 ; tan 45° = 1;tan 90°= ∞.ഏതെങ്കിലുമൊരു ത്രികോണം ABC യില് കോണങ്ങള് A, B, C യുടെ എതിര്വശങ്ങള് a,b,c ആയാല്
ത്രികോണമിതിയില് ഇതിനെ ടാന്ജെന്റ് നിയമം (tangent law) എന്നു പറയുന്നു. ലോഗരിതം ഉപയോഗിച്ചുള്ള ത്രികോണനിര്ധാരണത്തിന് ഈ ഫോര്മുലയാണ് ഉപയോഗിക്കുന്നത്.
y = tan x എന്ന ഫലനത്തിന്റെ ആലേഖ(graph)ത്തെ ടാന്ജെന്റ് വക്രം (tangent curve) എന്നു പറയുന്നു. ഇതൊരു സന്തത (continous) വക്രമല്ല. മൂലബിന്ദുവില്ക്കൂടി പോകുന്ന വക്രത്തിന്റെ ശാഖ ഈ രേഖകള്ക്ക് അനന്തസ്പര്ശരേഖീയ (asymptotic)മാണ് (ചിത്രം നോക്കുക).
(പ്രൊ. കെ.ജയചന്ദ്രന്)