This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

ഇലക്‌ട്രോണികം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(പുതിയ താള്‍: == ഇലക്‌ട്രോണികം == == Electronics == സക്രിയ/നിഷ്‌ക്രിയ ഉപകരണങ്ങള്‍ ഉള്‍പ...)
(ഇലക്‌ട്രോണികം-ഉപയോഗങ്ങള്‍)
 
(ഇടക്കുള്ള 5 പതിപ്പുകളിലെ മാറ്റങ്ങള്‍ ഇവിടെ കാണിക്കുന്നില്ല.)
വരി 2: വരി 2:
== Electronics ==
== Electronics ==
-
സക്രിയ/നിഷ്‌ക്രിയ ഉപകരണങ്ങള്‍ ഉള്‍പ്പെടുത്തി തയ്യാറാക്കുന്ന വിദ്യുത്‌പരിപഥങ്ങളുടെ രൂപകല്‌പനയെയും പ്രയുക്ത വൈദ്യുത കാന്തികബലങ്ങളുടെ സ്വാധീനത്താൽ ഇലക്‌ട്രോണുകള്‍ക്കുണ്ടാകുന്ന ചലനത്തെയും പറ്റി പ്രതിപാദിക്കുന്ന ശാസ്‌ത്രസാങ്കേതികശാഖ. ഇലക്‌ട്രോണ്‍, മെക്കാനിക്‌സ്‌ എന്നീ പദങ്ങളിൽനിന്നാണ്‌ ഇലക്‌ട്രോണിക്‌സ്‌ എന്ന പദം ഉണ്ടായത്‌.  ഇന്‍സ്റ്റിറ്റ്യൂഷന്‍ ഒഫ്‌ റേഡിയോ എന്‍ജിനീയേഴ്‌സിന്റെ നിർവചനമനുസരിച്ച്‌ ഇലക്‌ട്രോണികോപകരണങ്ങളെയും അവയുടെ പ്രയോഗങ്ങളെയും കുറിച്ചുള്ള ശാസ്‌ത്രത്തിനും സാങ്കേതികവിദ്യയ്‌ക്കും പൊതുവെയുള്ള പേരാണ്‌ ഇലക്‌ട്രോണികം. നിർവാതാവസ്ഥ (vacuum), താഴ്‌ന്ന മർദത്തിലുള്ള വാതകം, അർധചാലകങ്ങള്‍ എന്നിവയിൽക്കൂടിയുള്ള ഇലക്‌ട്രോണ്‍പ്രവാഹത്തെ നിയന്ത്രിക്കുന്ന ഉപകരണമാണ്‌ ഇലക്‌ട്രോണികോപകരണം. 19-ാം ശതകത്തിൽ രൂപംകൊണ്ട ഈ ശാസ്‌ത്രശാഖ ചുരുങ്ങിയ കാലയളവിനുള്ളിൽ അദ്‌ഭുതകരമായ വേഗത്തിൽ വളർന്ന്‌ വികസിച്ച്‌ ഇന്ന്‌ മാനവികജീവിതത്തിന്റെ സമസ്‌തമേഖലകളിലും നിർണായകമായ സ്വാധീനം ചെലുത്തുന്ന ഒന്നായി മാറിയിരിക്കുന്നു. ഏറെക്കാലം വൈദ്യുത സാങ്കേതികവിദ്യയുടെ ഭാഗമായാണ്‌ ഇതിനെ കരുതിയിരുന്നത്‌. എന്നാൽ കഴിഞ്ഞ നൂറ്റാണ്ടിന്റെ അവസാന ദശകങ്ങളിലെ അഭൂതപൂർവമായ വളർച്ചമൂലം ഇലക്‌ട്രോണികത്തിന്‌ സാങ്കേതികമേഖലയിൽ തനതായ ഒരു സ്ഥാനം ഉറപ്പിക്കാന്‍ കഴിഞ്ഞു. ആധുനിക വാർത്താവിനിമയം, ഗതാഗതം, വ്യവസായം, രാജ്യരക്ഷ തുടങ്ങിയ മേഖലകളിലെല്ലാം വിപ്ലവാത്മകമായ പരിവർത്തനമാണ്‌ ഇലക്‌ട്രോണികം പ്രദാനം ചെയ്‌തത്‌. ആധുനികമനുഷ്യന്റെ സാങ്കേതിക സംസ്‌കാരത്തിന്റെ ഉറവിടവും ജീവനാഡിയും ഇലക്‌ട്രോണികമാണെന്ന്‌ ചുരുക്കിപ്പറയാം. 18-ാം ശതകത്തിൽ മനുഷ്യന്റെ മാംസപേശികള്‍ക്ക്‌ വിമോചനം നല്‌കാന്‍ ആവിയന്ത്രത്തിന്‌ കഴിഞ്ഞെങ്കിൽ (വ്യാവസായിക വിപ്ലവം), ആധുനിക ഇലക്‌ട്രോണിക യുഗത്തിൽ കംപ്യൂട്ടർ മസ്‌തിഷ്‌കവും റോബോട്ടുകളും മറ്റൊരു വ്യാവസായിക വിപ്ലവത്തിന്‌ തുടക്കമിട്ടുകഴിഞ്ഞു.
+
സക്രിയ/നിഷ്‌ക്രിയ ഉപകരണങ്ങള്‍ ഉള്‍പ്പെടുത്തി തയ്യാറാക്കുന്ന വിദ്യുത്‌പരിപഥങ്ങളുടെ രൂപകല്‌പനയെയും പ്രയുക്ത വൈദ്യുത കാന്തികബലങ്ങളുടെ സ്വാധീനത്താല്‍ ഇലക്‌ട്രോണുകള്‍ക്കുണ്ടാകുന്ന ചലനത്തെയും പറ്റി പ്രതിപാദിക്കുന്ന ശാസ്‌ത്രസാങ്കേതികശാഖ. ഇലക്‌ട്രോണ്‍, മെക്കാനിക്‌സ്‌ എന്നീ പദങ്ങളില്‍നിന്നാണ്‌ ഇലക്‌ട്രോണിക്‌സ്‌ എന്ന പദം ഉണ്ടായത്‌.  ഇന്‍സ്റ്റിറ്റ്യൂഷന്‍ ഒഫ്‌ റേഡിയോ എന്‍ജിനീയേഴ്‌സിന്റെ നിര്‍വചനമനുസരിച്ച്‌ ഇലക്‌ട്രോണികോപകരണങ്ങളെയും അവയുടെ പ്രയോഗങ്ങളെയും കുറിച്ചുള്ള ശാസ്‌ത്രത്തിനും സാങ്കേതികവിദ്യയ്‌ക്കും പൊതുവെയുള്ള പേരാണ്‌ ഇലക്‌ട്രോണികം. നിര്‍വാതാവസ്ഥ (vacuum), താഴ്‌ന്ന മര്‍ദത്തിലുള്ള വാതകം, അര്‍ധചാലകങ്ങള്‍ എന്നിവയില്‍ക്കൂടിയുള്ള ഇലക്‌ട്രോണ്‍പ്രവാഹത്തെ നിയന്ത്രിക്കുന്ന ഉപകരണമാണ്‌ ഇലക്‌ട്രോണികോപകരണം. 19-ാം ശതകത്തില്‍ രൂപംകൊണ്ട ഈ ശാസ്‌ത്രശാഖ ചുരുങ്ങിയ കാലയളവിനുള്ളില്‍ അദ്‌ഭുതകരമായ വേഗത്തില്‍ വളര്‍ന്ന്‌ വികസിച്ച്‌ ഇന്ന്‌ മാനവികജീവിതത്തിന്റെ സമസ്‌തമേഖലകളിലും നിര്‍ണായകമായ സ്വാധീനം ചെലുത്തുന്ന ഒന്നായി മാറിയിരിക്കുന്നു. ഏറെക്കാലം വൈദ്യുത സാങ്കേതികവിദ്യയുടെ ഭാഗമായാണ്‌ ഇതിനെ കരുതിയിരുന്നത്‌. എന്നാല്‍ കഴിഞ്ഞ നൂറ്റാണ്ടിന്റെ അവസാന ദശകങ്ങളിലെ അഭൂതപൂര്‍വമായ വളര്‍ച്ചമൂലം ഇലക്‌ട്രോണികത്തിന്‌ സാങ്കേതികമേഖലയില്‍ തനതായ ഒരു സ്ഥാനം ഉറപ്പിക്കാന്‍ കഴിഞ്ഞു. ആധുനിക വാര്‍ത്താവിനിമയം, ഗതാഗതം, വ്യവസായം, രാജ്യരക്ഷ തുടങ്ങിയ മേഖലകളിലെല്ലാം വിപ്ലവാത്മകമായ പരിവര്‍ത്തനമാണ്‌ ഇലക്‌ട്രോണികം പ്രദാനം ചെയ്‌തത്‌. ആധുനികമനുഷ്യന്റെ സാങ്കേതിക സംസ്‌കാരത്തിന്റെ ഉറവിടവും ജീവനാഡിയും ഇലക്‌ട്രോണികമാണെന്ന്‌ ചുരുക്കിപ്പറയാം. 18-ാം ശതകത്തില്‍ മനുഷ്യന്റെ മാംസപേശികള്‍ക്ക്‌ വിമോചനം നല്‌കാന്‍ ആവിയന്ത്രത്തിന്‌ കഴിഞ്ഞെങ്കില്‍ (വ്യാവസായിക വിപ്ലവം), ആധുനിക ഇലക്‌ട്രോണിക യുഗത്തില്‍ കംപ്യൂട്ടര്‍ മസ്‌തിഷ്‌കവും റോബോട്ടുകളും മറ്റൊരു വ്യാവസായിക വിപ്ലവത്തിന്‌ തുടക്കമിട്ടുകഴിഞ്ഞു.
 +
 
== അടിസ്ഥാനതത്ത്വങ്ങളും സംവിധാനവും==
== അടിസ്ഥാനതത്ത്വങ്ങളും സംവിധാനവും==
-
പദാർഥങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെ ചലനമാണ്‌ ഇലക്‌ട്രോണികത്തിന്റെ അടിസ്ഥാനം. വൈദ്യുത/കാന്തികബലങ്ങള്‍ പ്രയോഗിക്കുക വഴി ഇലക്‌ട്രോണുകളുടെ ചലനത്തെ പ്രയോജനകരമായ രീതിയിലേക്ക്‌ മാറ്റുകയാണ്‌ ഇലക്‌ട്രോണിക ഉപകരണങ്ങള്‍ ചെയ്യുന്നത്‌. ബാറ്ററിപോലുള്ള വൈദ്യുത സ്രാതസ്സുകളിൽ സൃഷ്‌ടിക്കപ്പെടുന്ന വൈദ്യുതമർദത്തെ വോള്‍ട്ടത (voltage) എന്നുവിളിക്കുന്നു. ഇലക്‌ട്രോണുകളുടെ പ്രവാഹത്തെയാണ്‌ വൈദ്യുതധാര (current)എന്നു വിളിക്കുന്നത്‌. ഒരു സെക്കന്‍ഡിൽ പ്രവഹിക്കുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചമാണ്‌ വൈദ്യുതിയുടെ തീവ്രത നിശ്ചയിക്കുന്നത്‌.  
+
പദാര്‍ഥങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെ ചലനമാണ്‌ ഇലക്‌ട്രോണികത്തിന്റെ അടിസ്ഥാനം. വൈദ്യുത/കാന്തികബലങ്ങള്‍ പ്രയോഗിക്കുക വഴി ഇലക്‌ട്രോണുകളുടെ ചലനത്തെ പ്രയോജനകരമായ രീതിയിലേക്ക്‌ മാറ്റുകയാണ്‌ ഇലക്‌ട്രോണിക ഉപകരണങ്ങള്‍ ചെയ്യുന്നത്‌. ബാറ്ററിപോലുള്ള വൈദ്യുത സ്രാതസ്സുകളില്‍ സൃഷ്‌ടിക്കപ്പെടുന്ന വൈദ്യുതമര്‍ദത്തെ വോള്‍ട്ടത (voltage) എന്നുവിളിക്കുന്നു. ഇലക്‌ട്രോണുകളുടെ പ്രവാഹത്തെയാണ്‌ വൈദ്യുതധാര (current)എന്നു വിളിക്കുന്നത്‌. ഒരു സെക്കന്‍ഡില്‍ പ്രവഹിക്കുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചമാണ്‌ വൈദ്യുതിയുടെ തീവ്രത നിശ്ചയിക്കുന്നത്‌.  
-
വൈദ്യുതി കടത്തിവിടാനുള്ള കഴിവിനെ അടിസ്ഥാനമാക്കി പദാർഥങ്ങളെ ചാലകങ്ങള്‍, അർധചാലകങ്ങള്‍, അചാലകങ്ങള്‍ എന്നിങ്ങനെ തരംതിരിച്ചിരിക്കുന്നു. വൈദ്യുതിയെ കടത്തിവിടുന്നവയാണ്‌ ചാലകങ്ങള്‍. അചാലകങ്ങള്‍ വൈദ്യുതിപ്രവാഹത്തെ തടയുന്നവയാണ്‌. എന്നാൽ വൈദ്യുതിയെ ഭാഗികമായി കടത്തിവിടുന്നവയാണ്‌ അർധചാലക പദാർഥങ്ങള്‍. ഇലക്‌ട്രോണുകളുടെ ചലനത്തെപ്പറ്റി കൂടുതൽ മനസ്സിലാക്കണമെങ്കിൽ മൂലകങ്ങളിലെ അണുഘടനയെപ്പറ്റി അറിഞ്ഞിരിക്കണം.
+
വൈദ്യുതി കടത്തിവിടാനുള്ള കഴിവിനെ അടിസ്ഥാനമാക്കി പദാര്‍ഥങ്ങളെ ചാലകങ്ങള്‍, അര്‍ധചാലകങ്ങള്‍, അചാലകങ്ങള്‍ എന്നിങ്ങനെ തരംതിരിച്ചിരിക്കുന്നു. വൈദ്യുതിയെ കടത്തിവിടുന്നവയാണ്‌ ചാലകങ്ങള്‍. അചാലകങ്ങള്‍ വൈദ്യുതിപ്രവാഹത്തെ തടയുന്നവയാണ്‌. എന്നാല്‍ വൈദ്യുതിയെ ഭാഗികമായി കടത്തിവിടുന്നവയാണ്‌ അര്‍ധചാലക പദാര്‍ഥങ്ങള്‍. ഇലക്‌ട്രോണുകളുടെ ചലനത്തെപ്പറ്റി കൂടുതല്‍ മനസ്സിലാക്കണമെങ്കില്‍ മൂലകങ്ങളിലെ അണുഘടനയെപ്പറ്റി അറിഞ്ഞിരിക്കണം.
-
=== ഇലക്‌ട്രോണിക സംവിധാനം മൂലകങ്ങളിൽ===
+
=== ഇലക്‌ട്രോണിക സംവിധാനം മൂലകങ്ങളില്‍===
-
ദ്രവ്യത്തിന്റെ ഏറ്റവും ചെറിയ ഘടകമായ അണുവിൽ ധനചാർജുള്ള അണുകേന്ദ്രത്തിന്‌ (nucleus) ചുറ്റും ഋണചാർജുള്ള ഇലക്‌ട്രോണുകള്‍ സഞ്ചരിക്കുന്നു. ക്വാണ്ടം നിയമങ്ങള്‍ക്കു വിധേയമായി ഇലക്‌ട്രോണുകള്‍ K, L, M, N എന്നിങ്ങനെ വിവിധ ഊർജകക്ഷ്യകളിലാണ്‌ സ്ഥിതിചെയ്യുന്നത്‌. ഓരോ കക്ഷ്യയോടും അനുബന്ധിച്ച്‌  s, p, d, f എന്നിങ്ങനെ ഉപകക്ഷ്യകളും ഉണ്ട്‌. ഏറ്റവും കുറഞ്ഞ ഊർജം K കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആയിരിക്കും. ഇതിനെ തറനില (ground state) എന്നു വിളിക്കും. L, M, N കക്ഷ്യകളിൽ ഊർജനില ക്രമപ്രവൃദ്ധമായി കൂടിവരുന്നു. ന്യൂക്ലിയസിന്‌ ഏറ്റവും അടുത്തുള്ള ഒന്നാമത്തെ കക്ഷ്യയിൽനിന്നും പുറത്തേക്കുള്ള കക്ഷ്യകളിലേക്ക്‌ ഏതു മൂലകത്തിലായാലും 2, 8, 18, 32 ... എന്ന രീതിയിലായിരിക്കും ഇലക്‌ട്രോണ്‍ വിന്യാസം. ഏറ്റവും അവസാനത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഒരിക്കലും 8-കൂടാന്‍ പാടില്ല. ഇങ്ങനെ അവസാന കക്ഷ്യയിൽ 8 ഇലക്‌ട്രോണുകള്‍ കൃത്യമായി വരുന്ന മൂലകങ്ങള്‍ വളരെ സ്ഥിരതയുള്ളതായിരിക്കും. ഇങ്ങനെയുള്ള മൂലകങ്ങള്‍ മറ്റു മൂലകങ്ങളുമായി രാസപ്രവർത്തനത്തിലേർപ്പെടാറില്ല. അവസാന കക്ഷ്യയിൽ 8 ഇലക്‌ട്രോണിൽ കുറവാണെങ്കിൽ ഇവയെ എളുപ്പം ആറ്റത്തിൽനിന്നു സ്വതന്ത്രമാക്കാം. എന്നാൽ അകത്തെ കക്ഷ്യകളിൽ താങ്ങാവുന്നത്ര ഇലക്‌ട്രോണുകള്‍ ഉണ്ടെങ്കിൽ ധനചാർജുള്ള ന്യൂക്ലിയസ്സുമായി അവ കൂടുതൽ ആകർഷിക്കപ്പെടുകയും തത്‌ഫലമായി അവയെ സ്വതന്ത്രമാക്കാന്‍ സാധ്യമല്ലാതെയും വരുന്നു. ഇത്തരം ഇലക്‌ട്രോണുകളെ ബൗണ്ട്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. സ്വതന്ത്രമാക്കുവാന്‍ വളരെ എളുപ്പമുള്ള പുറത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളെ വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആവശ്യത്തിനുള്ള ഊർജം നൽകിയാൽ അവയെ സ്വതന്ത്രമാക്കുവാന്‍ സാധിക്കുന്നു. ഇങ്ങനെ സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ (സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍) എന്നു പറയുന്നു. ഇലക്‌ട്രോണിക പഠനത്തിൽ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ പ്രധാന പങ്കുവഹിക്കുന്നു. സാധാരണ അവസ്ഥയിൽ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ താരതമ്യേന കൂടുതലുള്ള മൂലകങ്ങളെ സുചാലകങ്ങള്‍ എന്നും കുറവായവയെ കുചാലകങ്ങള്‍ എന്നും പറയുന്നു. സുചാലകങ്ങളിലും കുചാലകങ്ങളിലും കാണുന്ന ഫ്രീ ഇലക്‌ട്രോണുകള്‍ക്കിടയിൽ ഫ്രീ ഇലക്‌ട്രോണുകളുള്ള മൂലകങ്ങളെ അർധചാലകങ്ങള്‍ എന്നുപറയുന്നു. നോ. ക്വാണ്ടം സിദ്ധാന്തം
+
ദ്രവ്യത്തിന്റെ ഏറ്റവും ചെറിയ ഘടകമായ അണുവില്‍ ധനചാര്‍ജുള്ള അണുകേന്ദ്രത്തിന്‌ (nucleus) ചുറ്റും ഋണചാര്‍ജുള്ള ഇലക്‌ട്രോണുകള്‍ സഞ്ചരിക്കുന്നു. ക്വാണ്ടം നിയമങ്ങള്‍ക്കു വിധേയമായി ഇലക്‌ട്രോണുകള്‍ K, L, M, N എന്നിങ്ങനെ വിവിധ ഊര്‍ജകക്ഷ്യകളിലാണ്‌ സ്ഥിതിചെയ്യുന്നത്‌. ഓരോ കക്ഷ്യയോടും അനുബന്ധിച്ച്‌  s, p, d, f എന്നിങ്ങനെ ഉപകക്ഷ്യകളും ഉണ്ട്‌. ഏറ്റവും കുറഞ്ഞ ഊര്‍ജം K കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആയിരിക്കും. ഇതിനെ തറനില (ground state) എന്നു വിളിക്കും. L, M, N കക്ഷ്യകളില്‍ ഊര്‍ജനില ക്രമപ്രവൃദ്ധമായി കൂടിവരുന്നു. ന്യൂക്ലിയസിന്‌ ഏറ്റവും അടുത്തുള്ള ഒന്നാമത്തെ കക്ഷ്യയില്‍നിന്നും പുറത്തേക്കുള്ള കക്ഷ്യകളിലേക്ക്‌ ഏതു മൂലകത്തിലായാലും 2, 8, 18, 32 ... എന്ന രീതിയിലായിരിക്കും ഇലക്‌ട്രോണ്‍ വിന്യാസം. ഏറ്റവും അവസാനത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഒരിക്കലും 8-ല്‍ കൂടാന്‍ പാടില്ല. ഇങ്ങനെ അവസാന കക്ഷ്യയില്‍ 8 ഇലക്‌ട്രോണുകള്‍ കൃത്യമായി വരുന്ന മൂലകങ്ങള്‍ വളരെ സ്ഥിരതയുള്ളതായിരിക്കും. ഇങ്ങനെയുള്ള മൂലകങ്ങള്‍ മറ്റു മൂലകങ്ങളുമായി രാസപ്രവര്‍ത്തനത്തിലേര്‍പ്പെടാറില്ല. അവസാന കക്ഷ്യയില്‍ 8 ഇലക്‌ട്രോണില്‍ കുറവാണെങ്കില്‍ ഇവയെ എളുപ്പം ആറ്റത്തില്‍നിന്നു സ്വതന്ത്രമാക്കാം. എന്നാല്‍ അകത്തെ കക്ഷ്യകളില്‍ താങ്ങാവുന്നത്ര ഇലക്‌ട്രോണുകള്‍ ഉണ്ടെങ്കില്‍ ധനചാര്‍ജുള്ള ന്യൂക്ലിയസ്സുമായി അവ കൂടുതല്‍ ആകര്‍ഷിക്കപ്പെടുകയും തത്‌ഫലമായി അവയെ സ്വതന്ത്രമാക്കാന്‍ സാധ്യമല്ലാതെയും വരുന്നു. ഇത്തരം ഇലക്‌ട്രോണുകളെ ബൗണ്ട്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. സ്വതന്ത്രമാക്കുവാന്‍ വളരെ എളുപ്പമുള്ള പുറത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളെ വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആവശ്യത്തിനുള്ള ഊര്‍ജം നല്‍കിയാല്‍ അവയെ സ്വതന്ത്രമാക്കുവാന്‍ സാധിക്കുന്നു. ഇങ്ങനെ സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ (സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍) എന്നു പറയുന്നു. ഇലക്‌ട്രോണിക പഠനത്തില്‍ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ പ്രധാന പങ്കുവഹിക്കുന്നു. സാധാരണ അവസ്ഥയില്‍ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ താരതമ്യേന കൂടുതലുള്ള മൂലകങ്ങളെ സുചാലകങ്ങള്‍ എന്നും കുറവായവയെ കുചാലകങ്ങള്‍ എന്നും പറയുന്നു. സുചാലകങ്ങളിലും കുചാലകങ്ങളിലും കാണുന്ന ഫ്രീ ഇലക്‌ട്രോണുകള്‍ക്കിടയില്‍ ഫ്രീ ഇലക്‌ട്രോണുകളുള്ള മൂലകങ്ങളെ അര്‍ധചാലകങ്ങള്‍ എന്നുപറയുന്നു. നോ. ക്വാണ്ടം സിദ്ധാന്തം
-
=== ക്രിസ്റ്റലീകൃത ഘടനയും ഊർജനിലയും===
+
=== ക്രിസ്റ്റലീകൃത ഘടനയും ഊര്‍ജനിലയും===
-
ഒട്ടുമിക്ക ലോഹങ്ങളും അർധചാലകങ്ങളും ക്രിസ്റ്റലീകൃത ഘടനയോട്‌ കൂടിയതാണെന്ന്‌ എക്‌സ്‌-റേ പഠനങ്ങള്‍ സ്ഥിരീകരിച്ചിട്ടുണ്ട്‌. ക്രിസ്റ്റലീയഘടനയിൽ അണുവിലെ അന്തർകക്ഷ്യകളിലെ ഇലക്‌ട്രോണ്‍ ഊർജത്തിന്‌ വലിയ മാറ്റമുണ്ടാകുന്നില്ല. എന്നാൽ ബാഹ്യകക്ഷ്യകളിലെ ഇലക്‌ട്രോണുകളുടെ മേൽ സമീപാണുക്കളുടെ സ്വാധീനം ശക്തമായതിനാൽ ഊർജമാറ്റമുണ്ടാകുന്നു. ബാഹ്യഇലക്‌ട്രോണുകളുടെ പുതിയ ഊർജനില ക്വാണ്ടം ബലതന്ത്രം ഉപയോഗിച്ചാണ്‌ വിശദീകരിക്കപ്പെട്ടിട്ടുള്ളത്‌. വിവിധ കക്ഷ്യകളിലുള്ള ഇലക്‌ട്രോണുകളുടെ ഊർജനില സ്വതന്ത്ര അണുവിൽ നിശ്ചിത അകലത്തിലാണ്‌ ക്രമീകരിക്കപ്പെട്ടിട്ടുള്ളതെങ്കിൽ ക്രിസ്റ്റലീകൃത ഘടനയിൽ ഊർജനിലകള്‍ പരസ്‌പരം ഇഴുകിച്ചേർന്നിരിക്കുന്നു.
+
ഒട്ടുമിക്ക ലോഹങ്ങളും അര്‍ധചാലകങ്ങളും ക്രിസ്റ്റലീകൃത ഘടനയോട്‌ കൂടിയതാണെന്ന്‌ എക്‌സ്‌-റേ പഠനങ്ങള്‍ സ്ഥിരീകരിച്ചിട്ടുണ്ട്‌. ക്രിസ്റ്റലീയഘടനയില്‍ അണുവിലെ അന്തര്‍കക്ഷ്യകളിലെ ഇലക്‌ട്രോണ്‍ ഊര്‍ജത്തിന്‌ വലിയ മാറ്റമുണ്ടാകുന്നില്ല. എന്നാല്‍ ബാഹ്യകക്ഷ്യകളിലെ ഇലക്‌ട്രോണുകളുടെ മേല്‍ സമീപാണുക്കളുടെ സ്വാധീനം ശക്തമായതിനാല്‍ ഊര്‍ജമാറ്റമുണ്ടാകുന്നു. ബാഹ്യഇലക്‌ട്രോണുകളുടെ പുതിയ ഊര്‍ജനില ക്വാണ്ടം ബലതന്ത്രം ഉപയോഗിച്ചാണ്‌ വിശദീകരിക്കപ്പെട്ടിട്ടുള്ളത്‌. വിവിധ കക്ഷ്യകളിലുള്ള ഇലക്‌ട്രോണുകളുടെ ഊര്‍ജനില സ്വതന്ത്ര അണുവില്‍ നിശ്ചിത അകലത്തിലാണ്‌ ക്രമീകരിക്കപ്പെട്ടിട്ടുള്ളതെങ്കില്‍ ക്രിസ്റ്റലീകൃത ഘടനയില്‍ ഊര്‍ജനിലകള്‍ പരസ്‌പരം ഇഴുകിച്ചേര്‍ന്നിരിക്കുന്നു.
-
=== ഇലക്‌ട്രോണിക ഉത്സർജനം===
+
=== ഇലക്‌ട്രോണിക ഉത്സര്‍ജനം===
-
ഒരു ലോഹത്തിന്റെ ഉപരിതലത്തിൽനിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ സ്വതന്ത്രമാക്കപ്പെടുന്ന പ്രക്രിയയാണ്‌ ഇലക്‌ട്രോണിക ഉത്സർജനം. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഏതെങ്കിലും രീതിയിലുള്ള ഊർജം നൽകുന്നതിന്റെ ഫലമായി അവ ലോഹങ്ങളുടെ അറ്റോമികബലത്തിൽനിന്ന്‌ പൂർണമായും സ്വതന്ത്രമാക്കപ്പെടുന്നു. നിശ്ചിത ഓർബിറ്റലിലൂടെയുള്ള ചലനം നിമിത്തം ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭ്യമാകുന്ന ഗതികോർജത്തിന്റെ അപര്യാപ്‌തതമൂലമാണ്‌ ഇപ്രകാരം പുറമേനിന്നും ഊർജം നല്‌കേണ്ടിവരുന്നത്‌. ഇങ്ങനെ ലോഹോപരിതലത്തിൽനിന്ന്‌ സ്വതന്ത്രമാകാന്‍ ഇലക്‌ട്രോണിന്‌ ആകെ വേണ്ട ഊർജത്തെ ബാരിയർ ഊർജം (EB) എന്നു പറയുന്നു. ഒരു ഇലക്‌ട്രോണിനെ ലോഹോപരിതലത്തിൽനിന്നു സ്വതന്ത്രമാക്കുവാന്‍ വേണ്ടി പുറമേനിന്ന്‌ നല്‌കുന്ന ഏറ്റവും കുറഞ്ഞ ഊർജത്തെ വർക്ക്‌ ഫങ്‌ഷന്‍ (EW) എന്നു പറയുന്നു. ശുദ്ധലോഹങ്ങളിൽ ഇതിന്റെ  മൂല്യം ഏകദേശം 2 ല്‌ മുതൽ 6 ല്‌ വരെയാകാം. വർക്ക്‌ ഫങ്‌ഷന്‍ ലോഹത്തിന്റെ സ്വഭാവം, ശുദ്ധത (purity) മുതലായവയെ ആശ്രയിച്ചിരിക്കുന്നു. ലോഹത്തെ ചൂടാക്കി ഉയർന്ന താപനിലയിലെത്തിക്കുന്നതുവഴിയും ഇലക്‌ട്രോണികനിർഗമനം സാധ്യമാണ്‌ (തെർമിയോണിക്‌ നിർഗമനം). നിഷ്‌ക്രിയ വാതകങ്ങള്‍ നിറച്ച ട്യൂബിനുള്ളിലോ നിർവാതാവസ്ഥയിലോ വച്ചു വേണം ഇവയെ ചൂടാക്കേണ്ടത്‌. വൈദ്യുത പ്രവാഹത്തിലൂടെ ആവശ്യമായ താപം നല്‌കാവുന്നതാണ്‌. ഒ.ഡബ്ല്യു. റിച്ചാർഡ്‌സണ്‍ ആവിഷ്‌കരിച്ച റിച്ചാർഡ്‌സണ്‍ ഡാഷ്‌മാന്‍ സമീകരണത്തിലൂടെ നിർഗമന വൈദ്യുതപ്രവാഹത്തിന്റെ പരിമാണം (ആമ്പിയർ/ചതുരശ്രമീറ്റർ) നിർണയിക്കാം.
+
ഒരു ലോഹത്തിന്റെ ഉപരിതലത്തില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ സ്വതന്ത്രമാക്കപ്പെടുന്ന പ്രക്രിയയാണ്‌ ഇലക്‌ട്രോണിക ഉത്സര്‍ജനം. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഏതെങ്കിലും രീതിയിലുള്ള ഊര്‍ജം നല്‍കുന്നതിന്റെ ഫലമായി അവ ലോഹങ്ങളുടെ അറ്റോമികബലത്തില്‍നിന്ന്‌ പൂര്‍ണമായും സ്വതന്ത്രമാക്കപ്പെടുന്നു. നിശ്ചിത ഓര്‍ബിറ്റലിലൂടെയുള്ള ചലനം നിമിത്തം ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭ്യമാകുന്ന ഗതികോര്‍ജത്തിന്റെ അപര്യാപ്‌തതമൂലമാണ്‌ ഇപ്രകാരം പുറമേനിന്നും ഊര്‍ജം നല്‌കേണ്ടിവരുന്നത്‌. ഇങ്ങനെ ലോഹോപരിതലത്തില്‍നിന്ന്‌ സ്വതന്ത്രമാകാന്‍ ഇലക്‌ട്രോണിന്‌ ആകെ വേണ്ട ഊര്‍ജത്തെ ബാരിയര്‍ ഊര്‍ജം (EB) എന്നു പറയുന്നു. ഒരു ഇലക്‌ട്രോണിനെ ലോഹോപരിതലത്തില്‍നിന്നു സ്വതന്ത്രമാക്കുവാന്‍ വേണ്ടി പുറമേനിന്ന്‌ നല്‌കുന്ന ഏറ്റവും കുറഞ്ഞ ഊര്‍ജത്തെ വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ (EW) എന്നു പറയുന്നു. ശുദ്ധലോഹങ്ങളില്‍ ഇതിന്റെ  മൂല്യം ഏകദേശം 2 ല്‌ മുതല്‍ 6 ല്‌ വരെയാകാം. വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ ലോഹത്തിന്റെ സ്വഭാവം, ശുദ്ധത (purity) മുതലായവയെ ആശ്രയിച്ചിരിക്കുന്നു. ലോഹത്തെ ചൂടാക്കി ഉയര്‍ന്ന താപനിലയിലെത്തിക്കുന്നതുവഴിയും ഇലക്‌ട്രോണികനിര്‍ഗമനം സാധ്യമാണ്‌ (തെര്‍മിയോണിക്‌ നിര്‍ഗമനം). നിഷ്‌ക്രിയ വാതകങ്ങള്‍ നിറച്ച ട്യൂബിനുള്ളിലോ നിര്‍വാതാവസ്ഥയിലോ വച്ചു വേണം ഇവയെ ചൂടാക്കേണ്ടത്‌. വൈദ്യുത പ്രവാഹത്തിലൂടെ ആവശ്യമായ താപം നല്‌കാവുന്നതാണ്‌. ഒ.ഡബ്ല്യു. റിച്ചാര്‍ഡ്‌സണ്‍ ആവിഷ്‌കരിച്ച റിച്ചാര്‍ഡ്‌സണ്‍ ഡാഷ്‌മാന്‍ സമീകരണത്തിലൂടെ നിര്‍ഗമന വൈദ്യുതപ്രവാഹത്തിന്റെ പരിമാണം (ആമ്പിയര്‍/ചതുരശ്രമീറ്റര്‍) നിര്‍ണയിക്കാം.
IS = AT2be/k
IS = AT2be/k
-
റിച്ചാർഡ്‌സണ്‍ സ്ഥിരാങ്കം (ആമ്പിയർ/ചതുരശ്രമീറ്റർ/ ചതുരശ്രഡിഗ്രി)
+
റിച്ചാര്‍ഡ്‌സണ്‍ സ്ഥിരാങ്കം (ആമ്പിയര്‍/ചതുരശ്രമീറ്റര്‍/ ചതുരശ്രഡിഗ്രി)
-
T  കേവല താപനില (കെൽവിന്‍)
+
T  കേവല താപനില (കെല്‍വിന്‍)
-
നിർഗമനോപരിതലവും ചുറ്റുപാടും തമ്മിലുള്ള ബന്ധം നിർണയിക്കുന്ന വർക്ക്‌ ഫങ്‌ഷന്‍ സ്ഥിരാങ്കം (കെൽവിന്‍)
+
നിര്‍ഗമനോപരിതലവും ചുറ്റുപാടും തമ്മിലുള്ള ബന്ധം നിര്‍ണയിക്കുന്ന വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ സ്ഥിരാങ്കം (കെല്‍വിന്‍)
e – 2.71828 (സ്വാഭാവിക ലോഗരിത ആധാരം)
e – 2.71828 (സ്വാഭാവിക ലോഗരിത ആധാരം)
വരി 26: വരി 27:
k  ബോട്‌സ്‌മാന്‍ സ്ഥിരാങ്കം
k  ബോട്‌സ്‌മാന്‍ സ്ഥിരാങ്കം
-
പ്രധാനമായും നാല്‌ വിധത്തിലുള്ള ഉത്സർജനം മുഖേനയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ ആറ്റത്തിൽനിന്നു സ്വതന്ത്രമാക്കപ്പെടുന്നത്‌.
+
പ്രധാനമായും നാല്‌ വിധത്തിലുള്ള ഉത്സര്‍ജനം മുഖേനയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ ആറ്റത്തില്‍നിന്നു സ്വതന്ത്രമാക്കപ്പെടുന്നത്‌.
-
(i) തെർമിയോണിക്‌ ഉത്സർജനം, (ii) ഫീൽഡ്‌ ഉത്സർജനം, (iii) ഫൊട്ടോഇലക്‌ട്രിക്‌ ഉത്സർജനം, (iv) സെക്കന്‍ഡറി ഉത്സർജനം.
+
(i) തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനം, (ii) ഫീല്‍ഡ്‌ ഉത്സര്‍ജനം, (iii) ഫൊട്ടോഇലക്‌ട്രിക്‌ ഉത്സര്‍ജനം, (iv) സെക്കന്‍ഡറി ഉത്സര്‍ജനം.
-
i. തെർമിയോണിക്‌ ഉത്സർജനം. താപോർജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സർജനമാണിത്‌. ഈ രീതിയനുസരിച്ച്‌, ലോഹത്തെ ഒരു നിർദിഷ്‌ട അളവിൽ ചൂടാക്കിയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ ഊർജം വർധിപ്പിക്കുന്നത്‌. അവശ്യംവേണ്ട ഊർജം സംഭരിച്ചശേഷം ഫ്രീ ഇലക്‌ട്രോണുകള്‍ അറ്റോമിക ബന്ധനം ഭേദിച്ച്‌ ലോഹോപരിതലത്തിൽനിന്നു പുറത്തുവരുന്നു. ഇങ്ങനെ പുറത്തുവരുന്ന ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഊഷ്‌മാവിനെ ആശ്രയിച്ചിരിക്കുന്നു. ഊഷ്‌മാവ്‌ കൂടുതലാണെങ്കിൽ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചവും കൂടുതലായിരിക്കും. തെർമിയോണിക്‌ ഉത്സർജനത്തെ പ്രമറി ഉത്സർജനം എന്നുംപറയാറുണ്ട്‌. വാക്വം ട്യൂബുകളിൽ ഇത്തരത്തിലുള്ള ഉത്സർജനമാണ്‌ നടക്കുന്നത്‌.  
+
i. തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനം. താപോര്‍ജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനമാണിത്‌. ഈ രീതിയനുസരിച്ച്‌, ലോഹത്തെ ഒരു നിര്‍ദിഷ്‌ട അളവില്‍ ചൂടാക്കിയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ ഊര്‍ജം വര്‍ധിപ്പിക്കുന്നത്‌. അവശ്യംവേണ്ട ഊര്‍ജം സംഭരിച്ചശേഷം ഫ്രീ ഇലക്‌ട്രോണുകള്‍ അറ്റോമിക ബന്ധനം ഭേദിച്ച്‌ ലോഹോപരിതലത്തില്‍നിന്നു പുറത്തുവരുന്നു. ഇങ്ങനെ പുറത്തുവരുന്ന ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഊഷ്‌മാവിനെ ആശ്രയിച്ചിരിക്കുന്നു. ഊഷ്‌മാവ്‌ കൂടുതലാണെങ്കില്‍ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചവും കൂടുതലായിരിക്കും. തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനത്തെ പ്രമറി ഉത്സര്‍ജനം എന്നുംപറയാറുണ്ട്‌. വാക്വം ട്യൂബുകളില്‍ ഇത്തരത്തിലുള്ള ഉത്സര്‍ജനമാണ്‌ നടക്കുന്നത്‌.  
-
ii. ഫീൽഡ്‌ ഉത്സർജനം. ഉന്നത വൈദ്യുതമണ്ഡലം കൊണ്ടുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സർജനമാണിത്‌. ഋണചാർജുള്ള ഇലക്‌ട്രോണ്‍ കണങ്ങളെ ശക്തിയേറിയ ഒരു വൈദ്യുത മണ്ഡലത്തിൽ ധനവോള്‍ട്ടത നല്‌കി സ്വതന്ത്രമാക്കുകയാണ്‌ ഇതിൽ. വൈദ്യുതമണ്ഡലത്തിന്റെ തീവ്രതയ്‌ക്കനുസരിച്ച്‌ സ്വതന്ത്രമാക്കപ്പെടുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചം വ്യത്യാസപ്പെടുന്നു. തീവ്രത കൂടുതലാണെങ്കിൽ ഇലക്‌ട്രോണ്‍ ഉത്സർജനവും കൂടുതലായിരിക്കും.
+
ii. ഫീല്‍ഡ്‌ ഉത്സര്‍ജനം. ഉന്നത വൈദ്യുതമണ്ഡലം കൊണ്ടുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനമാണിത്‌. ഋണചാര്‍ജുള്ള ഇലക്‌ട്രോണ്‍ കണങ്ങളെ ശക്തിയേറിയ ഒരു വൈദ്യുത മണ്ഡലത്തില്‍ ധനവോള്‍ട്ടത നല്‌കി സ്വതന്ത്രമാക്കുകയാണ്‌ ഇതില്‍. വൈദ്യുതമണ്ഡലത്തിന്റെ തീവ്രതയ്‌ക്കനുസരിച്ച്‌ സ്വതന്ത്രമാക്കപ്പെടുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചം വ്യത്യാസപ്പെടുന്നു. തീവ്രത കൂടുതലാണെങ്കില്‍ ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനവും കൂടുതലായിരിക്കും.
   
   
-
iii. ഫോട്ടോഇലക്‌ട്രിക്‌ ഉത്സർജനം. പ്രകാശോർജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സർജനം. പ്രകാശത്തിൽനിന്നുള്ള ഊർജം ലോഹപ്രതലത്തിലൂടെ ഇലക്‌ട്രോണുകളിൽ വ്യാപിക്കപ്പെടുന്നതിനാൽ അവ സ്വതന്ത്രമാക്കപ്പെടുന്നു. പ്രകാശത്തിന്റെ തീവ്രത കൂടുന്നതിനനുസരിച്ച്‌ ഇലക്‌ട്രോണ്‍ ഉത്സർജനവും കൂടുന്നു.  
+
iii. ഫോട്ടോഇലക്‌ട്രിക്‌ ഉത്സര്‍ജനം. പ്രകാശോര്‍ജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനം. പ്രകാശത്തില്‍നിന്നുള്ള ഊര്‍ജം ലോഹപ്രതലത്തിലൂടെ ഇലക്‌ട്രോണുകളില്‍ വ്യാപിക്കപ്പെടുന്നതിനാല്‍ അവ സ്വതന്ത്രമാക്കപ്പെടുന്നു. പ്രകാശത്തിന്റെ തീവ്രത കൂടുന്നതിനനുസരിച്ച്‌ ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനവും കൂടുന്നു.
 +
 
 +
iv. സെക്കന്‍ഡറി ഉത്സര്‍ജനം. മറ്റു കണങ്ങള്‍ ഉപയോഗിച്ചുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനം നടത്തുന്ന രീതിയാണിത്‌. ഇലക്‌ട്രോണ്‍, ധന അയോണ്‍ എന്നിവ ഒരു ലോഹപ്രതലത്തില്‍ വളരെ ശക്തിയോടെ പതിക്കുമ്പോള്‍ നിപതിക്കുന്ന കണങ്ങളുടെ ഗതികോര്‍ജം ലോഹോപരിതലത്തിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭിക്കുന്നു. ഈ ഊര്‍ജവും അവയുടെ സാധാരണ ഊര്‍ജവും ചേര്‍ന്ന്‌ അറ്റോമികബന്ധനം ഭേദിച്ച്‌ അവ പുറത്തുകടക്കുന്നു. ചെന്നിടിക്കുന്ന ഇലക്‌ട്രോണുകളെ പ്രമറി ഇലക്‌ട്രോണുകള്‍ എന്നും ലോഹോപരിതലത്തില്‍നിന്നു സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ സെക്കന്‍ഡറി ഇലക്‌ട്രോണുകള്‍ എന്നും പറയുന്നു.
 +
=== ഇലക്‌ട്രോണ്‍ പ്രവാഹം അര്‍ധചാലകങ്ങളില്‍ ===
 +
ഋണാത്മകചാര്‍ജുള്ള ഇലക്‌ട്രോണുകളുടെ പ്രവാഹമാണ്‌ ലോഹങ്ങളിലെ വൈദ്യുതിക്കാധാരമെങ്കില്‍ ഋണാത്മകവും ധനാത്മകവുമായ ചാര്‍ജുകളുടെ പ്രവാഹമാണ്‌ അര്‍ധചാലകങ്ങളില്‍ വിദ്യുദ്‌ധാരയെ നിയന്ത്രിക്കുന്നത്‌. അര്‍ധചാലകങ്ങളല്ലാത്ത മറ്റ്‌ മൂലകാണുക്കള്‍ അര്‍ധചാലകങ്ങളോട്‌ കൂട്ടിച്ചേര്‍ത്ത്‌ ഇലക്‌ട്രോണുകളുടെയോ സുഷിര(holes)ങ്ങളുടെയോ സ്വാധീനത്താല്‍ വൈദ്യുത പ്രവാഹം അര്‍ധചാലകങ്ങളില്‍ സാധ്യമാക്കാവുന്നതാണ്‌. (സഹസംയോജനബന്ധനത്തിലുള്ള ഇലക്‌ട്രോണ്‍ സ്വതന്ത്രമാകുമ്പോള്‍ ഉണ്ടാകുന്ന ഋണചാര്‍ജിന്റെ അഭാവത്തെയാണ്‌ സുഷിരം എന്നുപറയുന്നത്‌. ഇത്‌ ഒരു ധനചാര്‍ജ്‌ പോലെ വര്‍ത്തിക്കുന്നു.) ഈ പ്രക്രിയയെയാണ്‌ "ഡോപിങ്‌' (doping) എന്നു വിളിക്കുന്നത്‌.
 +
അര്‍ധചാലകങ്ങളിലെ സഹസംയോജക ബന്ധന(covalent bonds)ത്തില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ വേര്‍പെടുമ്പോള്‍ അവ ക്രിസ്റ്റലീകൃത ഘടനയ്‌ക്കുള്ളിലൂടെ അലക്ഷ്യമായി സഞ്ചരിക്കുന്നു. ഒരു ബാഹ്യ വിദ്യുത്‌മണ്ഡലം ഈ ശുദ്ധഅര്‍ധചാലകങ്ങളില്‍ (intrinsic semiconductors) പ്രയോഗിക്കുമ്പോള്‍ സ്വതന്ത്ര ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും സഹായത്തോടെ വിദ്യുത്‌പ്രവാഹം സാധ്യമാകുന്നു. സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ ധനാഗ്രത്തിലേക്കും (positive terminal) സുഷിരങ്ങള്‍ ഋണാഗ്രത്തിലേക്കും (negative terminal) നീങ്ങുന്നു. വിരുദ്ധ ദിശകളിലാണ്‌ ഇവയുടെ ചലനം. ഋണാഗ്രത്തില്‍ സുഷിരങ്ങള്‍ എത്തുമ്പോള്‍ അവിടെയുള്ള ഇലക്‌ട്രോണുകളുമായിച്ചേര്‍ന്ന്‌ സുഷിരങ്ങള്‍ നിഷ്‌ക്രിയമാക്കപ്പെടുന്നു. അതേ സമയം ബാറ്ററിയുടെ ധനാഗ്രത്തിന്‌ സമീപമുള്ള ഇലക്‌ട്രോണുകള്‍ ധനാഗ്രത്തിലേക്ക്‌ ആകര്‍ഷിക്കപ്പെടുന്നു. ഇലക്‌ട്രോണുകള്‍ സ്ഥാനചലനംമൂലം അപ്പോള്‍ രൂപീകൃതമാകുന്ന സുഷിരങ്ങള്‍ വീണ്ടും പഴയ ദിശയില്‍ ഋണാഗ്രത്തിലേക്ക്‌ നീങ്ങുന്നു. സാമ്പ്രദായിക വൈദ്യുത പ്രവാഹദിശ (conventional current) ഇലക്‌ട്രോണ്‍ സഞ്ചാരത്തിന്‌ വിപരീത ദിശയിലായിരിക്കും.
 +
 
 +
ഡോപിങ്ങിന്‌ വിധേയമായ അര്‍ധചാലകങ്ങള്‍ ദാതാവ്‌ (donor), സ്വീകര്‍ത്താവ്‌ (receiver) എന്നിങ്ങനെ രണ്ടുവിധത്തിലുണ്ട്‌. ഇവയെ യഥാക്രമം N-തരം (N-type), P-തരം (P-type) എന്നും വിളിക്കാം. Pടൈപ്പ്‌ അര്‍ധചാലകത്തിന്റെയും Nടൈപ്പ്‌ അര്‍ധചാലകത്തിന്റെയും സന്ധി ഒരു ദിശയിലേക്കുമാത്രമേ കാര്യമായി വൈദ്യുതി പ്രവഹിപ്പിക്കുകയുള്ളൂ. ഈ ഉപാധിയെ ഒരു PN ജങ്‌ഷന്‍ ഡയോഡ്‌ എന്നു പറയുന്നു. സംയോജകതാമൂല്യം അഞ്ച്‌ ആയ ആഴ്‌സനിക്‌, ആന്റിമണി, ബിസ്‌മത്ത്‌, ഫോസ്‌ഫറസ്‌ തുടങ്ങിയ അന്യവസ്‌തുക്കള്‍ വളരെ ചെറിയ അളവില്‍ (ഒരു ലക്ഷത്തിലൊന്ന്‌ എന്ന കണക്കില്‍) അര്‍ധചാലകങ്ങളോട്‌ ചേര്‍ത്ത്‌ N--തരം ചാലകങ്ങളുണ്ടാക്കാം. സംയോജകതാമൂല്യം മൂന്ന്‌ ആയ ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം, അലുമിനിയം തുടങ്ങിയ അന്യവസ്‌തുക്കളാണ്‌ P-തരം അര്‍ധചാലകങ്ങളുടെ നിര്‍മാണത്തിന്‌ ഉപയോഗിക്കുന്നത്‌. ആധുനിക ഇലക്‌ട്രോണിക പരിപഥങ്ങളില്‍ അര്‍ധചാലകോപാധികള്‍ ധാരാളമായി ഉപയോഗപ്പെടുത്തി വരുന്നു. അത്യധികം ഉയര്‍ന്ന ശക്തിനില കൈകാര്യം ചെയ്യുന്ന പരിപഥങ്ങളിലൊഴികെ മറ്റെല്ലായിടങ്ങളിലും അര്‍ധചാലകഡയോഡുകളും ട്രോന്‍സിസ്റ്ററുകളും സൗകര്യം പോലെ ഉപയോഗിച്ച്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങള്‍ രൂപകല്‌പന ചെയ്യാവുന്നതാണ്‌.
 +
അര്‍ധചാലക വസ്‌തുക്കളുടെ പ്രത്യേക വൈദ്യുത ഗുണങ്ങളാണ്‌ ഖരാവസ്ഥാ-ഇലക്‌ട്രോണികത്തിന്‌ ആധാരമായി വര്‍ത്തിക്കുന്നത്‌.
-
iv. സെക്കന്‍ഡറി ഉത്സർജനം. മറ്റു കണങ്ങള്‍ ഉപയോഗിച്ചുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സർജനം നടത്തുന്ന രീതിയാണിത്‌. ഇലക്‌ട്രോണ്‍, ധന അയോണ്‍ എന്നിവ ഒരു ലോഹപ്രതലത്തിൽ വളരെ ശക്തിയോടെ പതിക്കുമ്പോള്‍ നിപതിക്കുന്ന കണങ്ങളുടെ ഗതികോർജം ലോഹോപരിതലത്തിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭിക്കുന്നു. ഈ ഊർജവും അവയുടെ സാധാരണ ഊർജവും ചേർന്ന്‌ അറ്റോമികബന്ധനം ഭേദിച്ച്‌ അവ പുറത്തുകടക്കുന്നു. ചെന്നിടിക്കുന്ന ഇലക്‌ട്രോണുകളെ പ്രമറി ഇലക്‌ട്രോണുകള്‍ എന്നും ലോഹോപരിതലത്തിൽനിന്നു സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ സെക്കന്‍ഡറി ഇലക്‌ട്രോണുകള്‍ എന്നും പറയുന്നു.
 
-
=== ഇലക്‌ട്രോണ്‍ പ്രവാഹം അർധചാലകങ്ങളിൽ ===
 
-
ഋണാത്മകചാർജുള്ള ഇലക്‌ട്രോണുകളുടെ പ്രവാഹമാണ്‌ ലോഹങ്ങളിലെ വൈദ്യുതിക്കാധാരമെങ്കിൽ ഋണാത്മകവും ധനാത്മകവുമായ ചാർജുകളുടെ പ്രവാഹമാണ്‌ അർധചാലകങ്ങളിൽ വിദ്യുദ്‌ധാരയെ നിയന്ത്രിക്കുന്നത്‌. അർധചാലകങ്ങളല്ലാത്ത മറ്റ്‌ മൂലകാണുക്കള്‍ അർധചാലകങ്ങളോട്‌ കൂട്ടിച്ചേർത്ത്‌ ഇലക്‌ട്രോണുകളുടെയോ സുഷിര(holes)ങ്ങളുടെയോ സ്വാധീനത്താൽ വൈദ്യുത പ്രവാഹം അർധചാലകങ്ങളിൽ സാധ്യമാക്കാവുന്നതാണ്‌. (സഹസംയോജനബന്ധനത്തിലുള്ള ഇലക്‌ട്രോണ്‍ സ്വതന്ത്രമാകുമ്പോള്‍ ഉണ്ടാകുന്ന ഋണചാർജിന്റെ അഭാവത്തെയാണ്‌ സുഷിരം എന്നുപറയുന്നത്‌. ഇത്‌ ഒരു ധനചാർജ്‌ പോലെ വർത്തിക്കുന്നു.) ഈ പ്രക്രിയയെയാണ്‌ "ഡോപിങ്‌' (doping) എന്നു വിളിക്കുന്നത്‌.
 
-
അർധചാലകങ്ങളിലെ സഹസംയോജക ബന്ധന(covalent bonds)ത്തിൽനിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ വേർപെടുമ്പോള്‍ അവ ക്രിസ്റ്റലീകൃത ഘടനയ്‌ക്കുള്ളിലൂടെ അലക്ഷ്യമായി സഞ്ചരിക്കുന്നു. ഒരു ബാഹ്യ വിദ്യുത്‌മണ്ഡലം ഈ ശുദ്ധഅർധചാലകങ്ങളിൽ (intrinsic semiconductors) പ്രയോഗിക്കുമ്പോള്‍ സ്വതന്ത്ര ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും സഹായത്തോടെ വിദ്യുത്‌പ്രവാഹം സാധ്യമാകുന്നു. സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ ധനാഗ്രത്തിലേക്കും (positive terminal) സുഷിരങ്ങള്‍ ഋണാഗ്രത്തിലേക്കും (negative terminal) നീങ്ങുന്നു. വിരുദ്ധ ദിശകളിലാണ്‌ ഇവയുടെ ചലനം. ഋണാഗ്രത്തിൽ സുഷിരങ്ങള്‍ എത്തുമ്പോള്‍ അവിടെയുള്ള ഇലക്‌ട്രോണുകളുമായിച്ചേർന്ന്‌ സുഷിരങ്ങള്‍ നിഷ്‌ക്രിയമാക്കപ്പെടുന്നു. അതേ സമയം ബാറ്ററിയുടെ ധനാഗ്രത്തിന്‌ സമീപമുള്ള ഇലക്‌ട്രോണുകള്‍ ധനാഗ്രത്തിലേക്ക്‌ ആകർഷിക്കപ്പെടുന്നു. ഇലക്‌ട്രോണുകള്‍ സ്ഥാനചലനംമൂലം അപ്പോള്‍ രൂപീകൃതമാകുന്ന സുഷിരങ്ങള്‍ വീണ്ടും പഴയ ദിശയിൽ ഋണാഗ്രത്തിലേക്ക്‌ നീങ്ങുന്നു. സാമ്പ്രദായിക വൈദ്യുത പ്രവാഹദിശ (conventional current) ഇലക്‌ട്രോണ്‍ സഞ്ചാരത്തിന്‌ വിപരീത ദിശയിലായിരിക്കും.
 
-
ഡോപിങ്ങിന്‌ വിധേയമായ അർധചാലകങ്ങള്‍ ദാതാവ്‌ (donor), സ്വീകർത്താവ്‌ (receiver) എന്നിങ്ങനെ രണ്ടുവിധത്തിലുണ്ട്‌. ഇവയെ യഥാക്രമം N-തരം (N-type), P-തരം (P-type) എന്നും വിളിക്കാം. Pടൈപ്പ്‌ അർധചാലകത്തിന്റെയും Nടൈപ്പ്‌ അർധചാലകത്തിന്റെയും സന്ധി ഒരു ദിശയിലേക്കുമാത്രമേ കാര്യമായി വൈദ്യുതി പ്രവഹിപ്പിക്കുകയുള്ളൂ. ഈ ഉപാധിയെ ഒരു PN ജങ്‌ഷന്‍ ഡയോഡ്‌ എന്നു പറയുന്നു. സംയോജകതാമൂല്യം അഞ്ച്‌ ആയ ആഴ്‌സനിക്‌, ആന്റിമണി, ബിസ്‌മത്ത്‌, ഫോസ്‌ഫറസ്‌ തുടങ്ങിയ അന്യവസ്‌തുക്കള്‍ വളരെ ചെറിയ അളവിൽ (ഒരു ലക്ഷത്തിലൊന്ന്‌ എന്ന കണക്കിൽ) അർധചാലകങ്ങളോട്‌ ചേർത്ത്‌ N--തരം ചാലകങ്ങളുണ്ടാക്കാം. സംയോജകതാമൂല്യം മൂന്ന്‌ ആയ ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം, അലുമിനിയം തുടങ്ങിയ അന്യവസ്‌തുക്കളാണ്‌ P-തരം അർധചാലകങ്ങളുടെ നിർമാണത്തിന്‌ ഉപയോഗിക്കുന്നത്‌. ആധുനിക ഇലക്‌ട്രോണിക പരിപഥങ്ങളിൽ അർധചാലകോപാധികള്‍ ധാരാളമായി ഉപയോഗപ്പെടുത്തി വരുന്നു. അത്യധികം ഉയർന്ന ശക്തിനില കൈകാര്യം ചെയ്യുന്ന പരിപഥങ്ങളിലൊഴികെ മറ്റെല്ലായിടങ്ങളിലും അർധചാലകഡയോഡുകളും ട്രോന്‍സിസ്റ്ററുകളും സൗകര്യം പോലെ ഉപയോഗിച്ച്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങള്‍ രൂപകല്‌പന ചെയ്യാവുന്നതാണ്‌.
 
-
അർധചാലക വസ്‌തുക്കളുടെ പ്രത്യേക വൈദ്യുത ഗുണങ്ങളാണ്‌ ഖരാവസ്ഥാ-ഇലക്‌ട്രോണികത്തിന്‌ ആധാരമായി വർത്തിക്കുന്നത്‌.
 
== അടിസ്ഥാന ഘടകങ്ങള്‍==
== അടിസ്ഥാന ഘടകങ്ങള്‍==
ഏതൊരു ഇലക്‌ട്രോണിക പരിപഥത്തിനും ചില അടിസ്ഥാന ഘടകങ്ങളുണ്ട്‌. അവയെ പൊതുവേ ക്രിയാത്മകം (active), നിഷ്‌ക്രിയം (passive) എന്നിങ്ങനെ രണ്ടായി തിരിക്കാം.
ഏതൊരു ഇലക്‌ട്രോണിക പരിപഥത്തിനും ചില അടിസ്ഥാന ഘടകങ്ങളുണ്ട്‌. അവയെ പൊതുവേ ക്രിയാത്മകം (active), നിഷ്‌ക്രിയം (passive) എന്നിങ്ങനെ രണ്ടായി തിരിക്കാം.
വരി 47: വരി 50:
[[ചിത്രം:Vol4_341_1.jpg|350px]]
[[ചിത്രം:Vol4_341_1.jpg|350px]]
-
ഒരു വൈദ്യുത സിഗ്നലിനെ പ്രവർധിപ്പിക്കാനോ കൈകാര്യം ചെയ്യാനോ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ മാത്രമേ കഴിയൂ. നിഷ്‌ക്രിയ ഘടകങ്ങള്‍ക്ക്‌ ഈ കഴിവുകളില്ല. എന്നാൽ നിഷ്‌ക്രിയ ഘടകങ്ങളുടെ സഹായത്തോടെ മാത്രമേ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ പ്രവർത്തിക്കാനാവൂ.
+
ഒരു വൈദ്യുത സിഗ്നലിനെ പ്രവര്‍ധിപ്പിക്കാനോ കൈകാര്യം ചെയ്യാനോ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ മാത്രമേ കഴിയൂ. നിഷ്‌ക്രിയ ഘടകങ്ങള്‍ക്ക്‌ ഈ കഴിവുകളില്ല. എന്നാല്‍ നിഷ്‌ക്രിയ ഘടകങ്ങളുടെ സഹായത്തോടെ മാത്രമേ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ പ്രവര്‍ത്തിക്കാനാവൂ.
=== നിഷ്‌ക്രിയ ഘടകങ്ങള്‍===
=== നിഷ്‌ക്രിയ ഘടകങ്ങള്‍===
-
രോധകം, ഇന്‍ഡക്‌ടർ, കപ്പാസിറ്റർ എന്നിവയാണ്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങളിൽ ഉപയോഗിക്കുന്ന നിഷ്‌ക്രിയ ഘടകങ്ങള്‍.   
+
രോധകം, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍ എന്നിവയാണ്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങളില്‍ ഉപയോഗിക്കുന്ന നിഷ്‌ക്രിയ ഘടകങ്ങള്‍.   
-
====  രോധകം (റെസിസ്റ്റർ)====
+
====  രോധകം (റെസിസ്റ്റര്‍)====
-
വൈദ്യുതിയുടെ ഒഴുക്കിന്‌ തടസ്സമുണ്ടാക്കാന്‍ കഴിവുള്ള ഉപകരണമാണ്‌ രോധകങ്ങള്‍ അഥവാ റെസിസ്റ്ററുകള്‍. വൈദ്യുത പ്രവാഹത്തിന്റെയും വോള്‍ട്ടതയുടെയും അളവിനു വ്യത്യാസമുണ്ടാക്കാന്‍ ഇവ പ്രയോജനപ്പെടുത്തുന്നു. സാധാരണയായി കാർബണ്‍ ഫിലിം, ക്രാമിയം, നിക്കൽ എന്നീ പദാർഥങ്ങള്‍ കൊണ്ടാണിവ നിർമിക്കുന്നത്‌. "ഓം' (Ohm) എന്ന ഏകകമാണ്‌ രോധത്തെ അളക്കാന്‍ ഉപയോഗിക്കുന്നത്‌. രോധത്തിന്റെ മുകളിൽ വരച്ചിട്ടുള്ള വിവിധ നിറങ്ങളിൽ നിന്നാണ്‌ രോധം രേഖപ്പെടുത്തുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം  [[ചിത്രം:Vol4_341_2.jpg|75px]]
+
വൈദ്യുതിയുടെ ഒഴുക്കിന്‌ തടസ്സമുണ്ടാക്കാന്‍ കഴിവുള്ള ഉപകരണമാണ്‌ രോധകങ്ങള്‍ അഥവാ റെസിസ്റ്ററുകള്‍. വൈദ്യുത പ്രവാഹത്തിന്റെയും വോള്‍ട്ടതയുടെയും അളവിനു വ്യത്യാസമുണ്ടാക്കാന്‍ ഇവ പ്രയോജനപ്പെടുത്തുന്നു. സാധാരണയായി കാര്‍ബണ്‍ ഫിലിം, ക്രാമിയം, നിക്കല്‍ എന്നീ പദാര്‍ഥങ്ങള്‍ കൊണ്ടാണിവ നിര്‍മിക്കുന്നത്‌. "ഓം' (Ohm) എന്ന ഏകകമാണ്‌ രോധത്തെ അളക്കാന്‍ ഉപയോഗിക്കുന്നത്‌. രോധത്തിന്റെ മുകളില്‍ വരച്ചിട്ടുള്ള വിവിധ നിറങ്ങളില്‍ നിന്നാണ്‌ രോധം രേഖപ്പെടുത്തുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം  [[ചിത്രം:Vol4_341_2.jpg|75px]]
-
==== കപ്പാസിറ്റർ====
+
==== കപ്പാസിറ്റര്‍====
-
വൈദ്യുത പരിപഥങ്ങളിൽ ചാർജ്‌ ശേഖരിച്ചുവയ്‌ക്കാന്‍ ഉപയോഗിക്കുന്ന ഉപകരണമാണ്‌ കപ്പാസിറ്ററുകള്‍. രണ്ട്‌ ലോഹ പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്ക്‌ ഇന്‍സുലേറ്ററുകളായ പേപ്പർ, മൈക്ക, സെറാമിക്‌ തുടങ്ങിയവ ഉപയോഗിച്ചാണ്‌ സാധാരണ കപ്പാസിറ്റർ നിർമിക്കുന്നത്‌. പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്കുള്ള ഇന്‍സുലേറ്ററിനെ ഡൈഇലക്‌ട്രിക്‌ എന്നുപറയുന്നു. വൈദ്യുതചാർജ്‌ ശേഖരിക്കാനുള്ള കപ്പാസിറ്ററിന്റെ കഴിവിനെ കപ്പാസിറ്റന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഫാരഡ്‌ എന്ന ഏകകമാണ്‌ ഇതളക്കാനുപയോഗിക്കുന്നത്‌. കപ്പാസിറ്റന്‍സ്‌ സാധാരണ കപ്പാസിറ്ററുകള്‍ക്ക്‌ മുകളിൽ രേഖപ്പെടുത്തിയിട്ടുണ്ടാകും. കളർകോഡ്‌ രീതിയിലും ഇത്‌ രേഖപ്പെടുത്താറുണ്ട്‌. പൊതുവായുള്ള ചിഹ്നം [[ചിത്രം:Vol4_341_3.jpg|75px]]
+
വൈദ്യുത പരിപഥങ്ങളില്‍ ചാര്‍ജ്‌ ശേഖരിച്ചുവയ്‌ക്കാന്‍ ഉപയോഗിക്കുന്ന ഉപകരണമാണ്‌ കപ്പാസിറ്ററുകള്‍. രണ്ട്‌ ലോഹ പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്ക്‌ ഇന്‍സുലേറ്ററുകളായ പേപ്പര്‍, മൈക്ക, സെറാമിക്‌ തുടങ്ങിയവ ഉപയോഗിച്ചാണ്‌ സാധാരണ കപ്പാസിറ്റര്‍ നിര്‍മിക്കുന്നത്‌. പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്കുള്ള ഇന്‍സുലേറ്ററിനെ ഡൈഇലക്‌ട്രിക്‌ എന്നുപറയുന്നു. വൈദ്യുതചാര്‍ജ്‌ ശേഖരിക്കാനുള്ള കപ്പാസിറ്ററിന്റെ കഴിവിനെ കപ്പാസിറ്റന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഫാരഡ്‌ എന്ന ഏകകമാണ്‌ ഇതളക്കാനുപയോഗിക്കുന്നത്‌. കപ്പാസിറ്റന്‍സ്‌ സാധാരണ കപ്പാസിറ്ററുകള്‍ക്ക്‌ മുകളില്‍ രേഖപ്പെടുത്തിയിട്ടുണ്ടാകും. കളര്‍കോഡ്‌ രീതിയിലും ഇത്‌ രേഖപ്പെടുത്താറുണ്ട്‌. പൊതുവായുള്ള ചിഹ്നം [[ചിത്രം:Vol4_341_3.jpg|75px]]
-
==== ഇന്‍ഡക്‌ടർ====
+
==== ഇന്‍ഡക്‌ടര്‍====
-
വൈദ്യുത പ്രവാഹ തീവ്രതയിലുണ്ടാകുന്ന മാറ്റങ്ങളെ ചെറുക്കാന്‍ കഴിവുള്ള ഉപകരണങ്ങളാണ്‌ ഇന്‍ഡക്‌ടറുകള്‍. വൈദ്യുതധാര കടന്നുപോകുമ്പോള്‍ ഉണ്ടാകുന്ന ഒരു കാന്തിക മണ്ഡലത്തിൽ ഊർജം സൂക്ഷിക്കുകയാണിവ ചെയ്യുന്നത്‌. വൈദ്യുത ഏറ്റക്കുറച്ചിലുകള്‍ ചെറുക്കാനുള്ള ഇന്‍ഡക്‌ടറിന്റെ കഴിവിനെ ഇന്‍ഡക്‌ടന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഹെന്‌റി എന്ന ഏകകത്തിലാണ്‌ ഇന്‍ഡക്‌ടന്‍സ്‌ അളക്കുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം [[ചിത്രം:Vol4_341_4.jpg|75px]]
+
വൈദ്യുത പ്രവാഹ തീവ്രതയിലുണ്ടാകുന്ന മാറ്റങ്ങളെ ചെറുക്കാന്‍ കഴിവുള്ള ഉപകരണങ്ങളാണ്‌ ഇന്‍ഡക്‌ടറുകള്‍. വൈദ്യുതധാര കടന്നുപോകുമ്പോള്‍ ഉണ്ടാകുന്ന ഒരു കാന്തിക മണ്ഡലത്തില്‍ ഊര്‍ജം സൂക്ഷിക്കുകയാണിവ ചെയ്യുന്നത്‌. വൈദ്യുത ഏറ്റക്കുറച്ചിലുകള്‍ ചെറുക്കാനുള്ള ഇന്‍ഡക്‌ടറിന്റെ കഴിവിനെ ഇന്‍ഡക്‌ടന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഹെന്‌റി എന്ന ഏകകത്തിലാണ്‌ ഇന്‍ഡക്‌ടന്‍സ്‌ അളക്കുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം [[ചിത്രം:Vol4_341_4.jpg|75px]]
=== ക്രിയാത്മക ഘടകങ്ങള്‍===
=== ക്രിയാത്മക ഘടകങ്ങള്‍===
-
ട്യൂബ്‌തരം, അർധചാലകതരം എന്നിങ്ങനെ ക്രിയാത്മകഘടകങ്ങളെ രണ്ടായി തിരിക്കാം.
+
ട്യൂബ്‌തരം, അര്‍ധചാലകതരം എന്നിങ്ങനെ ക്രിയാത്മകഘടകങ്ങളെ രണ്ടായി തിരിക്കാം.
==== ട്യൂബ്‌തരം====
==== ട്യൂബ്‌തരം====
[[ചിത്രം:Vol4_341_5.jpg|thumb|വാക്വം ഡയോഡ്‌]]
[[ചിത്രം:Vol4_341_5.jpg|thumb|വാക്വം ഡയോഡ്‌]]
-
ചൂടാക്കിയ ഒരു ഇലക്‌ട്രോഡിൽനിന്നും ഇലക്‌ട്രോണുകള്‍ ഉത്സർജിക്കുന്നതാണ്‌ ട്യൂബ്‌ ഉപകരണങ്ങളുടെ പ്രവർത്തനത്തിന്റെ അടിസ്ഥാനം. ഋണചാർജുള്ള കാഥോഡിൽനിന്നും ഉത്സർജിക്കുന്ന ഇലക്‌ട്രോണുകള്‍ ധനചാർജുള്ള ആനോഡിൽ എത്തിച്ചേരുന്നു. ആനോഡിനും കാഥോഡിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോഡുകള്‍ സജ്ജീകരിച്ച്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തെ നിയന്ത്രിക്കുകയും വിവിധ പ്രവൃത്തികള്‍ക്ക്‌ പ്രയോജനപ്പെടുത്തുകയും ചെയ്യുന്നു.  
+
ചൂടാക്കിയ ഒരു ഇലക്‌ട്രോഡില്‍നിന്നും ഇലക്‌ട്രോണുകള്‍ ഉത്സര്‍ജിക്കുന്നതാണ്‌ ട്യൂബ്‌ ഉപകരണങ്ങളുടെ പ്രവര്‍ത്തനത്തിന്റെ അടിസ്ഥാനം. ഋണചാര്‍ജുള്ള കാഥോഡില്‍നിന്നും ഉത്സര്‍ജിക്കുന്ന ഇലക്‌ട്രോണുകള്‍ ധനചാര്‍ജുള്ള ആനോഡില്‍ എത്തിച്ചേരുന്നു. ആനോഡിനും കാഥോഡിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോഡുകള്‍ സജ്ജീകരിച്ച്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തെ നിയന്ത്രിക്കുകയും വിവിധ പ്രവൃത്തികള്‍ക്ക്‌ പ്രയോജനപ്പെടുത്തുകയും ചെയ്യുന്നു.  
-
ട്യൂബുകളെന്നും വാതക ട്യൂബുകളെന്നും ട്യൂബ്‌ ഉപകരണങ്ങളെ വീണ്ടും രണ്ടായി തിരിക്കാം. വാക്വം ട്യൂബുകളിൽ കാഥോഡിനും ആനോഡിനും ഇടയ്‌ക്കുള്ള സ്ഥലം നിർവാതമായിരിക്കും. വാക്വം ഡയോഡ്‌, വാക്വം ട്രയോഡ്‌, വാക്വം ടെട്രോഡ്‌, വാക്വം പെന്റോഡ്‌ തുടങ്ങിയവ വാക്വം ട്യൂബുകള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌. വാതക  (gas diode), തൈറാട്രോണ്‍ എന്നിവ വിവിധതരം വാതക ട്യൂബുകളാണ്‌. വാതക ട്യൂബുകളിൽ ഏതെങ്കിലുമൊരു വാതകം നിറച്ചിരിക്കും.  
+
ട്യൂബുകളെന്നും വാതക ട്യൂബുകളെന്നും ട്യൂബ്‌ ഉപകരണങ്ങളെ വീണ്ടും രണ്ടായി തിരിക്കാം. വാക്വം ട്യൂബുകളില്‍ കാഥോഡിനും ആനോഡിനും ഇടയ്‌ക്കുള്ള സ്ഥലം നിര്‍വാതമായിരിക്കും. വാക്വം ഡയോഡ്‌, വാക്വം ട്രയോഡ്‌, വാക്വം ടെട്രോഡ്‌, വാക്വം പെന്റോഡ്‌ തുടങ്ങിയവ വാക്വം ട്യൂബുകള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌. വാതക  (gas diode), തൈറാട്രോണ്‍ എന്നിവ വിവിധതരം വാതക ട്യൂബുകളാണ്‌. വാതക ട്യൂബുകളില്‍ ഏതെങ്കിലുമൊരു വാതകം നിറച്ചിരിക്കും.  
[[ചിത്രം:Vol4_342_1.jpg|thumb|]]
[[ചിത്രം:Vol4_342_1.jpg|thumb|]]
-
ആദ്യകാലങ്ങളിൽ ട്യൂബ്‌തരം ഉപകരണങ്ങളായിരുന്നു വ്യാപകമായി ഉപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ചെറുതും കൂടുതൽ കാര്യക്ഷമവുമായ അർധചാലക ഉപകരണങ്ങള്‍ ആവിർഭവിച്ചതോടെ ട്യൂബ്‌ ഉപകരണങ്ങള്‍ ഏറെക്കുറെ അപ്രത്യക്ഷമായി എന്നു പറയാം.
+
ആദ്യകാലങ്ങളില്‍ ട്യൂബ്‌തരം ഉപകരണങ്ങളായിരുന്നു വ്യാപകമായി ഉപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ചെറുതും കൂടുതല്‍ കാര്യക്ഷമവുമായ അര്‍ധചാലക ഉപകരണങ്ങള്‍ ആവിര്‍ഭവിച്ചതോടെ ട്യൂബ്‌ ഉപകരണങ്ങള്‍ ഏറെക്കുറെ അപ്രത്യക്ഷമായി എന്നു പറയാം.
[[ചിത്രം:Vol4_342_2.jpg|thumb|]]
[[ചിത്രം:Vol4_342_2.jpg|thumb|]]
[[ചിത്രം:Vol4_342_3.jpg|thumb|]]
[[ചിത്രം:Vol4_342_3.jpg|thumb|]]
-
====അർധചാലകതരം ====
+
====അര്‍ധചാലകതരം ====
-
അർധചാലകങ്ങളായ സിലിക്കണ്‍, ജർമേനിയം എന്നിവ കൊണ്ട്‌ നിർമിക്കുന്ന ഇലക്‌ട്രോണിക ഘടകങ്ങളാണ്‌ ഈ വിഭാഗത്തിൽപ്പെടുന്നത്‌. ജങ്‌ഷന്‍ ഡയോഡ്‌, ബി.ജെ.റ്റി., യു.ജെ.റ്റി, എസ്‌.സി.ആർ, ടണൽ ഡയോഡ്‌ (Tunnel diode), സെനർ ഡയോഡ്‌ (Zener diode), ട്രോന്‍സിസ്റ്ററുകള്‍ എന്നിവ അർധചാലക ഘടകങ്ങള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌.
+
അര്‍ധചാലകങ്ങളായ സിലിക്കണ്‍, ജര്‍മേനിയം എന്നിവ കൊണ്ട്‌ നിര്‍മിക്കുന്ന ഇലക്‌ട്രോണിക ഘടകങ്ങളാണ്‌ ഈ വിഭാഗത്തില്‍പ്പെടുന്നത്‌. ജങ്‌ഷന്‍ ഡയോഡ്‌, ബി.ജെ.റ്റി., യു.ജെ.റ്റി, എസ്‌.സി.ആര്‍, ടണല്‍ ഡയോഡ്‌ (Tunnel diode), സെനര്‍ ഡയോഡ്‌ (Zener diode), ട്രോന്‍സിസ്റ്ററുകള്‍ എന്നിവ അര്‍ധചാലക ഘടകങ്ങള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌.
=== ഡയോഡ്‌===
=== ഡയോഡ്‌===
-
അർധചാലകങ്ങളായ സിലിക്കണ്‍/ജർമേനിയം ക്രിസ്റ്റലുകളുപയോഗിച്ചാണ്‌ ക്രിയാത്മക ഘടകങ്ങളായ ഡയോഡുകള്‍ നിർമിക്കുന്നത്‌. ഇവ ഒരു ദിശയിൽ മാത്രം വൈദ്യുതി കടത്തിവിടുന്നവയാണ്‌. ഒരു അർധചാലകത്തിന്റെ ഒരു വശത്ത്‌ ദാതാവ്‌ ആറ്റം കൊണ്ടും മറുവശത്ത്‌ സ്വീകർത്താവ്‌ ആറ്റം കൊണ്ടും ഡോപ്‌ ചെയ്‌താണ്‌ ഡയോഡ്‌ നിർമിക്കുന്നത്‌. ഈ രണ്ടുതരം ഭാഗങ്ങള്‍ ചേർന്നതായിരിക്കും ഒരു ഡയോഡ്‌. ഇവയെ ജച സന്ധി ഡയോഡുകള്‍ എന്നു വിളിക്കുന്നു.  
+
അര്‍ധചാലകങ്ങളായ സിലിക്കണ്‍/ജര്‍മേനിയം ക്രിസ്റ്റലുകളുപയോഗിച്ചാണ്‌ ക്രിയാത്മക ഘടകങ്ങളായ ഡയോഡുകള്‍ നിര്‍മിക്കുന്നത്‌. ഇവ ഒരു ദിശയില്‍ മാത്രം വൈദ്യുതി കടത്തിവിടുന്നവയാണ്‌. ഒരു അര്‍ധചാലകത്തിന്റെ ഒരു വശത്ത്‌ ദാതാവ്‌ ആറ്റം കൊണ്ടും മറുവശത്ത്‌ സ്വീകര്‍ത്താവ്‌ ആറ്റം കൊണ്ടും ഡോപ്‌ ചെയ്‌താണ്‌ ഡയോഡ്‌ നിര്‍മിക്കുന്നത്‌. ഈ രണ്ടുതരം ഭാഗങ്ങള്‍ ചേര്‍ന്നതായിരിക്കും ഒരു ഡയോഡ്‌. ഇവയെ ജച സന്ധി ഡയോഡുകള്‍ എന്നു വിളിക്കുന്നു.  
[[ചിത്രം:Vol4_342_4.jpg|thumb|]]
[[ചിത്രം:Vol4_342_4.jpg|thumb|]]
-
==== ഡയോഡ്‌-പ്രവർത്തനം====
+
==== ഡയോഡ്‌-പ്രവര്‍ത്തനം====
-
ഒരു ഡയോഡിൽക്കൂടി വൈദ്യുതി കടത്തി വിടുന്ന പ്രക്രിയ ബയാസിങ്‌ (biasing) എന്നാണറിയപ്പെടുന്നത്‌. ഫോർവേഡ്‌ ബയാസിങ്‌, റിവേഴ്‌സ്‌ ബയാസിങ്‌ എന്നിങ്ങനെ രണ്ടുതരം ബയാസിങ്‌ രീതികള്‍ നിലവിലുണ്ട്‌.
+
ഒരു ഡയോഡില്‍ക്കൂടി വൈദ്യുതി കടത്തി വിടുന്ന പ്രക്രിയ ബയാസിങ്‌ (biasing) എന്നാണറിയപ്പെടുന്നത്‌. ഫോര്‍വേഡ്‌ ബയാസിങ്‌, റിവേഴ്‌സ്‌ ബയാസിങ്‌ എന്നിങ്ങനെ രണ്ടുതരം ബയാസിങ്‌ രീതികള്‍ നിലവിലുണ്ട്‌.
[[ചിത്രം:Vol4_342_5.jpg|thumb|]]
[[ചിത്രം:Vol4_342_5.jpg|thumb|]]
-
ഫോർവേഡ്‌ ബയാസിങ്ങിൽ ഒരു ഡയോഡിന്റെ ജ ഭാഗത്ത്‌ ബാറ്ററിയുടെ +ve ടെർമിനലും ച ഭാഗത്ത്‌ ബാറ്ററിയുടെ-ve ടെർമിനലും ഘടിപ്പിക്കുന്നു. P ഭാഗത്ത്‌ ധന ചാർജ്‌ കൊടുക്കുമ്പോള്‍ സുഷിരങ്ങള്‍ വികർഷിക്കപ്പെട്ട്‌ അകന്നു പോകുന്നു. N ഭാഗത്ത്‌ ഇലക്‌ട്രോണുകള്‍ -ve ടെർമിനലിൽനിന്നും അകന്നുപോകുന്നു. ഇങ്ങനെ മധ്യഭാഗത്തേക്ക്‌ എത്തുന്ന ചാർജുകളിൽ ഒരേ ചാർജുള്ളവ വികർഷിക്കപ്പെടുകയും വിപരീതചാർജുകളുള്ളവ ആകർഷിക്കപ്പെടുകയും ചെയ്യുന്നു. ചാർജുകളുടെ മർദംമൂലം P ഭാഗത്തെ ഇലക്‌ട്രോണുകള്‍ തമ്മിലുള്ള ബന്ധം മുറിഞ്ഞ്‌ സ്വതന്ത്രമായ ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ +ve ലേക്ക്‌ ഒഴുകുന്നു. ഇങ്ങനെ വൈദ്യുത പ്രവാഹം ഉണ്ടാകുന്നു. PN സന്ധി ഡയോഡിന്റെ P ഭാഗത്ത്‌ ബാറ്ററിയുടെ EW ടെർമിനലും N ഭാഗത്ത്‌ ബാറ്ററിയുടെ LS ടെർമിനലും ഘടിപ്പിക്കുന്നതാണ്‌ റിവേഴ്‌സ്‌ ബയാസിങ്‌ രീതി. ഇങ്ങനെ ഘടിപ്പിക്കുമ്പോള്‍ P ഭാഗത്തെ സുഷിരങ്ങളും N ഭാഗത്തെ ഇലക്‌ട്രോണുകളും സന്ധിയിൽനിന്നും അകന്നുപോകുന്നു. ഈ രീതിയിൽ വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നില്ല.
+
ഫോര്‍വേഡ്‌ ബയാസിങ്ങില്‍ ഒരു ഡയോഡിന്റെ ജ ഭാഗത്ത്‌ ബാറ്ററിയുടെ +ve ടെര്‍മിനലും ച ഭാഗത്ത്‌ ബാറ്ററിയുടെ-ve ടെര്‍മിനലും ഘടിപ്പിക്കുന്നു. P ഭാഗത്ത്‌ ധന ചാര്‍ജ്‌ കൊടുക്കുമ്പോള്‍ സുഷിരങ്ങള്‍ വികര്‍ഷിക്കപ്പെട്ട്‌ അകന്നു പോകുന്നു. N ഭാഗത്ത്‌ ഇലക്‌ട്രോണുകള്‍ -ve ടെര്‍മിനലില്‍നിന്നും അകന്നുപോകുന്നു. ഇങ്ങനെ മധ്യഭാഗത്തേക്ക്‌ എത്തുന്ന ചാര്‍ജുകളില്‍ ഒരേ ചാര്‍ജുള്ളവ വികര്‍ഷിക്കപ്പെടുകയും വിപരീതചാര്‍ജുകളുള്ളവ ആകര്‍ഷിക്കപ്പെടുകയും ചെയ്യുന്നു. ചാര്‍ജുകളുടെ മര്‍ദംമൂലം P ഭാഗത്തെ ഇലക്‌ട്രോണുകള്‍ തമ്മിലുള്ള ബന്ധം മുറിഞ്ഞ്‌ സ്വതന്ത്രമായ ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ +ve ലേക്ക്‌ ഒഴുകുന്നു. ഇങ്ങനെ വൈദ്യുത പ്രവാഹം ഉണ്ടാകുന്നു. PN സന്ധി ഡയോഡിന്റെ P ഭാഗത്ത്‌ ബാറ്ററിയുടെ EW ടെര്‍മിനലും N ഭാഗത്ത്‌ ബാറ്ററിയുടെ LS ടെര്‍മിനലും ഘടിപ്പിക്കുന്നതാണ്‌ റിവേഴ്‌സ്‌ ബയാസിങ്‌ രീതി. ഇങ്ങനെ ഘടിപ്പിക്കുമ്പോള്‍ P ഭാഗത്തെ സുഷിരങ്ങളും N ഭാഗത്തെ ഇലക്‌ട്രോണുകളും സന്ധിയില്‍നിന്നും അകന്നുപോകുന്നു. ഈ രീതിയില്‍ വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നില്ല.
-
PN സന്ധി ഡയോഡുകള്‍ ഏറ്റവും അധികം ഉപയോഗിക്കുന്നത്‌ റെക്‌ടിഫിക്കേഷനുവേണ്ടിയാണ്‌. പ്രത്യാവർത്തി ധാരാ വൈദ്യുതിയെ നേർധാരയാക്കി മാറ്റുന്ന പ്രക്രിയയാണ്‌ റെക്‌ടിഫിക്കേഷന്‍. നോ. ഡയോഡ്‌
+
PN സന്ധി ഡയോഡുകള്‍ ഏറ്റവും അധികം ഉപയോഗിക്കുന്നത്‌ റെക്‌ടിഫിക്കേഷനുവേണ്ടിയാണ്‌. പ്രത്യാവര്‍ത്തി ധാരാ വൈദ്യുതിയെ നേര്‍ധാരയാക്കി മാറ്റുന്ന പ്രക്രിയയാണ്‌ റെക്‌ടിഫിക്കേഷന്‍. നോ. ഡയോഡ്‌
-
=== ട്രോന്‍സിസ്റ്റർ===
+
=== ട്രോന്‍സിസ്റ്റര്‍===
[[ചിത്രം:Vol4_343_1.jpg|thumb|]]
[[ചിത്രം:Vol4_343_1.jpg|thumb|]]
[[ചിത്രം:Vol4_343_2.jpg|thumb|]]
[[ചിത്രം:Vol4_343_2.jpg|thumb|]]
[[ചിത്രം:Vol4_343_3.jpg|thumb|]]
[[ചിത്രം:Vol4_343_3.jpg|thumb|]]
-
ജർമേനിയമോ സിലിക്കണോ ഉപയോഗിച്ച്‌ നിർമിക്കുന്ന ട്രോന്‍സിസ്റ്ററുകള്‍ ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ മുഖ്യഘടകമാണ്‌. അടിസ്ഥാനപരമായി ഒരു പ്രവർധക (Amplifying) ഉപകരണമായ ഇവയെ ദോലനം, സ്വിച്ചിങ്‌, റെക്‌ടിഫിക്കേഷന്‍ തുടങ്ങി നിരവധി ഉപയോഗങ്ങള്‍ക്കും പ്രയോജനപ്പെടുത്തുന്നു. ഒരേ തരം അർധചാലകവസ്‌തുവിന്റെ രണ്ടു ഭാഗങ്ങളെ മറ്റൊരുതരം അർധചാലക വസ്‌തുവിന്റെ ഒരു പാളികൊണ്ട്‌ വേർതിരിച്ചാണ്‌ ട്രോന്‍സിസ്റ്റർ രൂപപ്പെടുത്തുന്നത്‌. ഡോപ്‌ ചെയ്‌ത പദാർഥത്തെ അടിസ്ഥാനമാക്കി ഒരു ട്രോന്‍സിസ്റ്ററിൽ മൂന്ന്‌ പാളികള്‍ ഉണ്ടായിരിക്കും p,n,p പാളികളോ n,p,n പാളികളോ; ഇതിനനുസൃതങ്ങളായി ഇവയെ pnp ട്രോന്‍സിസ്റ്റർ എന്നോ npn ട്രോന്‍സിസ്റ്റർ എന്നോ വിളിക്കുന്നു. ട്രോന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉത്സർജകം (emitter) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (collector) എന്നും ഇവയ്‌ക്കിടയിലുള്ള കനംകുറഞ്ഞ പാളിയെ ആധാരം (base) എന്നും സൂചിപ്പിക്കുന്നു. ട്യൂബ്‌ ഉപകരണമായ ട്രയോഡിന്റെ പ്ലേറ്റ്‌, കാഥോഡ്‌, ബേസ്‌ എന്നിവയ്‌ക്ക്‌ സമാനമാണവ. ട്രയോഡ്‌ ഒരു വോള്‍ട്ടതാനിയന്ത്രിത ഉപാധിയാണ്‌; ട്രോന്‍സിസ്റ്റർ, ഒരു ധാരാനിയന്ത്രിത ഉപാധിയും. ആധാരത്തിൽക്കൂടി പ്രവഹിക്കുന്ന ഒരു ചെറിയ ധാരയ്‌ക്ക്‌ സംഗ്രാഹകധാരയ്‌ക്കുമേൽ നിർണായക സ്വാധീനം ചെലുത്താനാകുമെന്നാണ്‌ ട്രോന്‍സിസ്റ്റർ ഒരു പ്രവർധകമായി വർത്തിക്കുന്നതിന്റെ അടിസ്ഥാനതത്ത്വം.  
+
ജര്‍മേനിയമോ സിലിക്കണോ ഉപയോഗിച്ച്‌ നിര്‍മിക്കുന്ന ട്രോന്‍സിസ്റ്ററുകള്‍ ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ മുഖ്യഘടകമാണ്‌. അടിസ്ഥാനപരമായി ഒരു പ്രവര്‍ധക (Amplifying) ഉപകരണമായ ഇവയെ ദോലനം, സ്വിച്ചിങ്‌, റെക്‌ടിഫിക്കേഷന്‍ തുടങ്ങി നിരവധി ഉപയോഗങ്ങള്‍ക്കും പ്രയോജനപ്പെടുത്തുന്നു. ഒരേ തരം അര്‍ധചാലകവസ്‌തുവിന്റെ രണ്ടു ഭാഗങ്ങളെ മറ്റൊരുതരം അര്‍ധചാലക വസ്‌തുവിന്റെ ഒരു പാളികൊണ്ട്‌ വേര്‍തിരിച്ചാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ രൂപപ്പെടുത്തുന്നത്‌. ഡോപ്‌ ചെയ്‌ത പദാര്‍ഥത്തെ അടിസ്ഥാനമാക്കി ഒരു ട്രോന്‍സിസ്റ്ററില്‍ മൂന്ന്‌ പാളികള്‍ ഉണ്ടായിരിക്കും p,n,p പാളികളോ n,p,n പാളികളോ; ഇതിനനുസൃതങ്ങളായി ഇവയെ pnp ട്രോന്‍സിസ്റ്റര്‍ എന്നോ npn ട്രോന്‍സിസ്റ്റര്‍ എന്നോ വിളിക്കുന്നു. ട്രോന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉത്സര്‍ജകം (emitter) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (collector) എന്നും ഇവയ്‌ക്കിടയിലുള്ള കനംകുറഞ്ഞ പാളിയെ ആധാരം (base) എന്നും സൂചിപ്പിക്കുന്നു. ട്യൂബ്‌ ഉപകരണമായ ട്രയോഡിന്റെ പ്ലേറ്റ്‌, കാഥോഡ്‌, ബേസ്‌ എന്നിവയ്‌ക്ക്‌ സമാനമാണവ. ട്രയോഡ്‌ ഒരു വോള്‍ട്ടതാനിയന്ത്രിത ഉപാധിയാണ്‌; ട്രോന്‍സിസ്റ്റര്‍, ഒരു ധാരാനിയന്ത്രിത ഉപാധിയും. ആധാരത്തില്‍ക്കൂടി പ്രവഹിക്കുന്ന ഒരു ചെറിയ ധാരയ്‌ക്ക്‌ സംഗ്രാഹകധാരയ്‌ക്കുമേല്‍ നിര്‍ണായക സ്വാധീനം ചെലുത്താനാകുമെന്നാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുന്നതിന്റെ അടിസ്ഥാനതത്ത്വം.  
-
ട്രോന്‍സിസ്റ്ററുകളെ പരിപഥത്തിൽ മൂന്നു രീതിയിൽ ഘടിപ്പിക്കാം. ഉത്സർജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയിൽ ഒന്നിനെ നിവേശ പരിപഥത്തിലും മറ്റൊന്നിനെ നിർഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയിൽ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ്‌ യഥാക്രമം പൊതുഉത്സർജകം (Common emitter), പൊതുസംഗ്രാഹകം (Common collector), പൊതുആധാരം (Common base) പരിപഥ തരങ്ങള്‍.  
+
ട്രോന്‍സിസ്റ്ററുകളെ പരിപഥത്തില്‍ മൂന്നു രീതിയില്‍ ഘടിപ്പിക്കാം. ഉത്സര്‍ജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയില്‍ ഒന്നിനെ നിവേശ പരിപഥത്തിലും മറ്റൊന്നിനെ നിര്‍ഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയില്‍ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ്‌ യഥാക്രമം പൊതുഉത്സര്‍ജകം (Common emitter), പൊതുസംഗ്രാഹകം (Common collector), പൊതുആധാരം (Common base) പരിപഥ തരങ്ങള്‍.  
-
==== ട്രോന്‍സിസ്റ്റർ-പ്രവർത്തനം====
+
==== ട്രോന്‍സിസ്റ്റര്‍-പ്രവര്‍ത്തനം====
[[ചിത്രം:Vol4_343_4.jpg|thumb|]]
[[ചിത്രം:Vol4_343_4.jpg|thumb|]]
-
ട്രോന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രണ്ടു രീതിയിൽ ഘടിപ്പിക്കാം. ഒരു ജങ്‌ഷനിലെ n പാളി ധനാത്മകവും തൊട്ടടുത്ത p പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തിൽ ബാഹ്യപരിപഥം രൂപപ്പെടുത്തുന്നതാണ്‌ ഒരു രീതി. ഇത്തരം അവസ്ഥയിൽ n, p പാളികള്‍ക്കിടയിൽ അനുഭവപ്പെടുന്ന ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാപ്രവാഹം മാത്രമേ ഇത്തരത്തിൽ ജങ്‌ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉത്‌ക്രമ ബയസ്‌ (reverse bias) എന്നു വിളിക്കുന്നു. ഇതിനുപകരമായി n തലം ഋണാത്മകവും p തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ്‌ ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കിൽ ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയർന്ന തോതിലുള്ള ധാരാപ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയസ്‌ (forward bias) എന്ന്‌ വിളിക്കുന്നു. നോ. ട്രോന്‍സിസ്റ്റർ
+
ട്രോന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രണ്ടു രീതിയില്‍ ഘടിപ്പിക്കാം. ഒരു ജങ്‌ഷനിലെ n പാളി ധനാത്മകവും തൊട്ടടുത്ത p പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തില്‍ ബാഹ്യപരിപഥം രൂപപ്പെടുത്തുന്നതാണ്‌ ഒരു രീതി. ഇത്തരം അവസ്ഥയില്‍ n, p പാളികള്‍ക്കിടയില്‍ അനുഭവപ്പെടുന്ന ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാപ്രവാഹം മാത്രമേ ഇത്തരത്തില്‍ ജങ്‌ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉത്‌ക്രമ ബയസ്‌ (reverse bias) എന്നു വിളിക്കുന്നു. ഇതിനുപകരമായി n തലം ഋണാത്മകവും p തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ്‌ ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കില്‍ ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയര്‍ന്ന തോതിലുള്ള ധാരാപ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയസ്‌ (forward bias) എന്ന്‌ വിളിക്കുന്നു. നോ. ട്രോന്‍സിസ്റ്റര്‍
 +
 
== അടിസ്ഥാന പരിപഥങ്ങള്‍==
== അടിസ്ഥാന പരിപഥങ്ങള്‍==
-
ഉള്ളിലേക്ക്‌ നൽകുന്ന സിഗ്നലുകളെ അവയുടെ തരംഗരൂപത്തിന്‌ മാറ്റം വരുത്താത്ത രീതിയിൽ വലുതാക്കി പുറത്തുവിടാന്‍ കഴിവുള്ള പരിപഥങ്ങളാണ്‌ ആംപ്ലിഫയറുകള്‍ അഥവാ പ്രവർധകങ്ങള്‍. ഇവ ടെലിവിഷന്‍, റേഡിയോ, സി.ഡി. പ്ലെയർ, കംപ്യൂട്ടർ തുടങ്ങിയ ഉപകരണങ്ങളിലെല്ലാം ഒഴിച്ചുകൂടാന്‍ പറ്റാത്ത ഘടകമാണ്‌.
+
ഉള്ളിലേക്ക്‌ നല്‍കുന്ന സിഗ്നലുകളെ അവയുടെ തരംഗരൂപത്തിന്‌ മാറ്റം വരുത്താത്ത രീതിയില്‍ വലുതാക്കി പുറത്തുവിടാന്‍ കഴിവുള്ള പരിപഥങ്ങളാണ്‌ ആംപ്ലിഫയറുകള്‍ അഥവാ പ്രവര്‍ധകങ്ങള്‍. ഇവ ടെലിവിഷന്‍, റേഡിയോ, സി.ഡി. പ്ലെയര്‍, കംപ്യൂട്ടര്‍ തുടങ്ങിയ ഉപകരണങ്ങളിലെല്ലാം ഒഴിച്ചുകൂടാന്‍ പറ്റാത്ത ഘടകമാണ്‌.
-
ആദ്യകാലങ്ങളിൽ വാക്വം ട്രയോഡുകളും വാക്വം പെന്റോഡുകളുമാണ്‌ പ്രവർധകങ്ങളുടെ നിർമാണത്തിനുപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചുള്ളവ നിലവിൽ വന്നു. 1970-കളിൽ നിലവിൽ വന്ന ഫീൽഡ്‌ ഇഫക്‌ട്‌ ട്രാന്‍സിസ്റ്ററുകളും, 1980-കളിൽ വ്യാപകമായ മോസ്‌ഫെറ്റും പ്രവർധക മേഖലയിൽ വന്‍മാറ്റങ്ങളാണ്‌ വരുത്തിയത്‌. ഇന്ന്‌ ചിപ്പുകളുടെ രൂപത്തിലും പ്രവർധകങ്ങള്‍ ലഭ്യമാണ്‌.
+
ആദ്യകാലങ്ങളില്‍ വാക്വം ട്രയോഡുകളും വാക്വം പെന്റോഡുകളുമാണ്‌ പ്രവര്‍ധകങ്ങളുടെ നിര്‍മാണത്തിനുപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചുള്ളവ നിലവില്‍ വന്നു. 1970-കളില്‍ നിലവില്‍ വന്ന ഫീല്‍ഡ്‌ ഇഫക്‌ട്‌ ട്രാന്‍സിസ്റ്ററുകളും, 1980-കളില്‍ വ്യാപകമായ മോസ്‌ഫെറ്റും പ്രവര്‍ധക മേഖലയില്‍ വന്‍മാറ്റങ്ങളാണ്‌ വരുത്തിയത്‌. ഇന്ന്‌ ചിപ്പുകളുടെ രൂപത്തിലും പ്രവര്‍ധകങ്ങള്‍ ലഭ്യമാണ്‌.
-
ഒരു ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്റർ (BJT) ഉപയോഗിച്ച്‌ പൊതുഉത്സർജകം, പൊതുസംഗ്രാഹകം, പൊതുആധാരം എന്നിങ്ങനെ മൂന്ന്‌ വ്യത്യസ്‌ത രീതിയിൽ പ്രവർധക പരിപഥങ്ങളെ സജ്ജീകരിക്കാം. ഇവ യഥാക്രമം ആധാര/സംഗ്രാഹക/ഉത്സർജക പ്രവർധകങ്ങള്‍ എന്നറിയപ്പെടുന്നു.
+
ഒരു ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്റര്‍ (BJT) ഉപയോഗിച്ച്‌ പൊതുഉത്സര്‍ജകം, പൊതുസംഗ്രാഹകം, പൊതുആധാരം എന്നിങ്ങനെ മൂന്ന്‌ വ്യത്യസ്‌ത രീതിയില്‍ പ്രവര്‍ധക പരിപഥങ്ങളെ സജ്ജീകരിക്കാം. ഇവ യഥാക്രമം ആധാര/സംഗ്രാഹക/ഉത്സര്‍ജക പ്രവര്‍ധകങ്ങള്‍ എന്നറിയപ്പെടുന്നു.
-
ബൈപോളാർ ട്രാന്‍സിസ്റ്ററിനുപകരം FET/MOSFET ഘടിപ്പിച്ചും പ്രവർധകങ്ങള്‍ തയ്യാറാക്കാം. ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്ററുകളുടെ പരിമിതികള്‍ ഒഴിവാക്കാന്‍ ഇത്തരം സംവിധാനങ്ങള്‍ക്ക്‌ കഴിയും. കോമണ്‍ ഗേറ്റ്‌, കോമണ്‍ സോഴ്‌സ്‌, കോമണ്‍ ഡ്രയിന്‍ എന്നിങ്ങനെയുള്ള വ്യത്യസ്‌ത പ്രവർധക പരിപഥങ്ങള്‍ ഇതുപയോഗിച്ച്‌ നിർമിക്കാം.
+
ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററിനുപകരം FET/MOSFET ഘടിപ്പിച്ചും പ്രവര്‍ധകങ്ങള്‍ തയ്യാറാക്കാം. ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്ററുകളുടെ പരിമിതികള്‍ ഒഴിവാക്കാന്‍ ഇത്തരം സംവിധാനങ്ങള്‍ക്ക്‌ കഴിയും. കോമണ്‍ ഗേറ്റ്‌, കോമണ്‍ സോഴ്‌സ്‌, കോമണ്‍ ഡ്രയിന്‍ എന്നിങ്ങനെയുള്ള വ്യത്യസ്‌ത പ്രവര്‍ധക പരിപഥങ്ങള്‍ ഇതുപയോഗിച്ച്‌ നിര്‍മിക്കാം.
-
വോള്‍ട്ടേജ്‌ പ്രവർധകങ്ങള്‍, ധാരാ പ്രവർധകങ്ങള്‍, പവർ പ്രവർധകങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവർധക പരിപഥങ്ങള്‍ നിലവിലുണ്ട്‌. വോള്‍ട്ടതാ പ്രവർധകങ്ങള്‍ മിക്ക ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലും ഒഴിച്ചുകൂടാനാകാത്ത ഘടകമാണ്‌. സാധാരണ ലൗഡ്‌സ്‌പീക്കറുകള്‍ ഉപയോഗപ്പെടുത്തുന്നത്‌ പവർ പ്രവർധകങ്ങളാണ്‌.
+
വോള്‍ട്ടേജ്‌ പ്രവര്‍ധകങ്ങള്‍, ധാരാ പ്രവര്‍ധകങ്ങള്‍, പവര്‍ പ്രവര്‍ധകങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ധക പരിപഥങ്ങള്‍ നിലവിലുണ്ട്‌. വോള്‍ട്ടതാ പ്രവര്‍ധകങ്ങള്‍ മിക്ക ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലും ഒഴിച്ചുകൂടാനാകാത്ത ഘടകമാണ്‌. സാധാരണ ലൗഡ്‌സ്‌പീക്കറുകള്‍ ഉപയോഗപ്പെടുത്തുന്നത്‌ പവര്‍ പ്രവര്‍ധകങ്ങളാണ്‌.
-
ഡിഫ്രന്‍ഷ്യൽ നിവേശ സൗകര്യമുള്ള പ്രവർധകങ്ങളാണ്‌ ഓപ്പറേഷണൽ ആംപ്ലിഫയറുകള്‍. ഒപാംപ്‌ എന്നറിയപ്പെടുന്ന ഇവയിൽ വിവിധ ഘടകങ്ങള്‍ സൂക്ഷ്‌മമായി ഉള്‍ച്ചേർത്തിരിക്കുന്നു. കൂടിയ വോള്‍ട്ടതാ ഗെയിന്‍, കൂടിയ നിവേശ കർണരോധം, കുറഞ്ഞ നിർഗമ കർണരോധം എന്നിവ ഇത്തരം ഒപാംപുകളുടെ സവിശേഷതകളാണ്‌. നേർയുഗ്മന, ഋണ ഫീഡ്‌ ബാക്കിങ്‌ രീതികളിലാണ്‌ ഇവയ്‌ക്കുള്ളിലെ പരിപഥങ്ങള്‍ സജ്ജീകരിക്കുന്നത്‌. നേർധാരയിലും പ്രത്യാവർത്തിധാരയിലും പ്രവർധകങ്ങള്‍ക്ക്‌ പ്രവർത്തിക്കാനാകും. നോ. പ്രവർധകം
+
ഡിഫ്രന്‍ഷ്യല്‍ നിവേശ സൗകര്യമുള്ള പ്രവര്‍ധകങ്ങളാണ്‌ ഓപ്പറേഷണല്‍ ആംപ്ലിഫയറുകള്‍. ഒപാംപ്‌ എന്നറിയപ്പെടുന്ന ഇവയില്‍ വിവിധ ഘടകങ്ങള്‍ സൂക്ഷ്‌മമായി ഉള്‍ച്ചേര്‍ത്തിരിക്കുന്നു. കൂടിയ വോള്‍ട്ടതാ ഗെയിന്‍, കൂടിയ നിവേശ കര്‍ണരോധം, കുറഞ്ഞ നിര്‍ഗമ കര്‍ണരോധം എന്നിവ ഇത്തരം ഒപാംപുകളുടെ സവിശേഷതകളാണ്‌. നേര്‍യുഗ്മന, ഋണ ഫീഡ്‌ ബാക്കിങ്‌ രീതികളിലാണ്‌ ഇവയ്‌ക്കുള്ളിലെ പരിപഥങ്ങള്‍ സജ്ജീകരിക്കുന്നത്‌. നേര്‍ധാരയിലും പ്രത്യാവര്‍ത്തിധാരയിലും പ്രവര്‍ധകങ്ങള്‍ക്ക്‌ പ്രവര്‍ത്തിക്കാനാകും. നോ. പ്രവര്‍ധകം
-
=== ആംപ്ലിഫയർ പരിപഥങ്ങള്‍===
+
=== ആംപ്ലിഫയര്‍ പരിപഥങ്ങള്‍===
-
ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേർധാരാ സ്രാതസ്സിൽനിന്നുള്ള ഊർജത്തെ ഒരു പ്രത്യാവർത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവിൽ ഒരേ ദിശയിൽ പ്രവഹിക്കുന്ന ധാരയിൽ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളിൽ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിർമിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു.  
+
ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേര്‍ധാരാ സ്രാതസ്സില്‍നിന്നുള്ള ഊര്‍ജത്തെ ഒരു പ്രത്യാവര്‍ത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവില്‍ ഒരേ ദിശയില്‍ പ്രവഹിക്കുന്ന ധാരയില്‍ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളില്‍ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിര്‍മിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു.  
-
വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിർഗമമായി നൽകുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡൽ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നൽകുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡൽ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റർ, ഇന്‍ഡക്‌ടർ, കപ്പാസിറ്റർ, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതൽ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയിൽ ലഭ്യമാണ്‌.
+
വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിര്‍ഗമമായി നല്‍കുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നല്‍കുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റര്‍, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതല്‍ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയില്‍ ലഭ്യമാണ്‌.
-
ഒരു ചാർജിത കപ്പാസിറ്റർ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാൽ, ഊർജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി  എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസിൽ ഊർജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാൽ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊർജപോഷണം നിർവഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റർ യഥാർഥത്തിൽ ഒരു പ്രവർധകമായി വർത്തിക്കുകയും നിർഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസിൽ നിവേശത്തിന്‌ തിരിച്ചു നൽകി ദോലന-ആയാമം നിലനിർത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കിൽ, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിർവീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളിൽ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.
+
ഒരു ചാര്‍ജിത കപ്പാസിറ്റര്‍ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാല്‍, ഊര്‍ജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി  എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസില്‍ ഊര്‍ജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാല്‍ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊര്‍ജപോഷണം നിര്‍വഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റര്‍ യഥാര്‍ഥത്തില്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുകയും നിര്‍ഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസില്‍ നിവേശത്തിന്‌ തിരിച്ചു നല്‍കി ദോലന-ആയാമം നിലനിര്‍ത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കില്‍, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിര്‍വീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളില്‍ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.
-
ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിർണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീർണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌.  
+
ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിര്‍ണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീര്‍ണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌.  
-
വളരെ പ്രാധാന്യമർഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌  മള്‍ട്ടിവൈബ്രറ്റർ പരിപഥം. കംപ്യൂട്ടറുകളിൽ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവർത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റർ  
+
വളരെ പ്രാധാന്യമര്‍ഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌  മള്‍ട്ടിവൈബ്രറ്റര്‍ പരിപഥം. കംപ്യൂട്ടറുകളില്‍ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റര്‍  
=== ദോലന പരിപഥങ്ങള്‍===
=== ദോലന പരിപഥങ്ങള്‍===
-
ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേർധാരാ സ്രാതസ്സിൽനിന്നുള്ള ഊർജത്തെ ഒരു പ്രത്യാവർത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവിൽ ഒരേ ദിശയിൽ പ്രവഹിക്കുന്ന ധാരയിൽ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളിൽ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിർമിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു.  
+
ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേര്‍ധാരാ സ്രാതസ്സില്‍നിന്നുള്ള ഊര്‍ജത്തെ ഒരു പ്രത്യാവര്‍ത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവില്‍ ഒരേ ദിശയില്‍ പ്രവഹിക്കുന്ന ധാരയില്‍ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളില്‍ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിര്‍മിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു.  
-
വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിർഗമമായി നൽകുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡൽ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നൽകുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡൽ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റർ, ഇന്‍ഡക്‌ടർ, കപ്പാസിറ്റർ, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതൽ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയിൽ ലഭ്യമാണ്‌.
+
വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിര്‍ഗമമായി നല്‍കുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നല്‍കുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റര്‍, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതല്‍ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയില്‍ ലഭ്യമാണ്‌.
-
ഒരു ചാർജിത കപ്പാസിറ്റർ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാൽ, ഊർജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി  എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസിൽ ഊർജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാൽ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊർജപോഷണം നിർവഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റർ യഥാർഥത്തിൽ ഒരു പ്രവർധകമായി വർത്തിക്കുകയും നിർഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസിൽ നിവേശത്തിന്‌ തിരിച്ചു നൽകി ദോലന-ആയാമം നിലനിർത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കിൽ, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിർവീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളിൽ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.
+
ഒരു ചാര്‍ജിത കപ്പാസിറ്റര്‍ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാല്‍, ഊര്‍ജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി  എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസില്‍ ഊര്‍ജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാല്‍ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊര്‍ജപോഷണം നിര്‍വഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റര്‍ യഥാര്‍ഥത്തില്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുകയും നിര്‍ഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസില്‍ നിവേശത്തിന്‌ തിരിച്ചു നല്‍കി ദോലന-ആയാമം നിലനിര്‍ത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കില്‍, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിര്‍വീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളില്‍ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.
 +
 
 +
ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിര്‍ണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീര്‍ണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌.
 +
വളരെ പ്രാധാന്യമര്‍ഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌  മള്‍ട്ടിവൈബ്രറ്റര്‍ പരിപഥം. കംപ്യൂട്ടറുകളില്‍ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റര്‍
-
ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിർണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീർണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌.
 
-
വളരെ പ്രാധാന്യമർഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌  മള്‍ട്ടിവൈബ്രറ്റർ പരിപഥം. കംപ്യൂട്ടറുകളിൽ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവർത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റർ
 
== ചരിത്രം-വികാസം==
== ചരിത്രം-വികാസം==
-
1883-കണ്ടുപിടിച്ച എഡിസണ്‍ പ്രഭാവത്തെ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തിലെ പ്രാരംഭ
+
1883-ല്‍ കണ്ടുപിടിച്ച എഡിസണ്‍ പ്രഭാവത്തെ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തിലെ പ്രാരംഭ
-
ബിന്ദുവായി പരിഗണിക്കാം. നേർധാരയിൽ പ്രവർത്തിക്കുന്ന വായുശൂന്യമായ വൈദ്യുത ബള്‍ബുകളുടെ ഫിലമെന്റിന്റെ ധനവൈദ്യുതിയുമായി ബന്ധിപ്പിച്ച അറ്റം കൂടുതൽ ചൂടാകുന്നതായും വേഗത്തിൽ മുറിഞ്ഞുപോകുന്നതായും എഡിസണ്‍ ശ്രദ്ധിച്ചു. ധനവൈദ്യുതിയുമായി ബന്ധപ്പെടുത്തിയ മറ്റൊരു പ്ലേറ്റ്‌ ബള്‍ബിനകത്തു വയ്‌ക്കുകയാണെങ്കിൽ പ്ലേറ്റ്‌ പരിപഥത്തിൽക്കൂടി ഒരു വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നതായും അദ്ദേഹം മനസ്സിലാക്കി. ഇതിനാണ്‌ "എഡിസണ്‍ പ്രഭാവം' എന്നുപറയുന്നത്‌. ചൂടായ ഫിലമെന്റിൽനിന്നും വിമുക്തമാകുന്ന ഇലക്‌ട്രോണുകള്‍ ധനവൈദ്യുതിയാൽ ആകർഷിക്കപ്പെട്ട്‌ പ്ലേറ്റിലെത്തുന്നതുമൂലം ബാഹ്യമായ പ്ലേറ്റ്‌ പരിപഥത്തിൽ വിപരീത ദിശയിൽ ഒരു വൈദ്യുതിപ്രവാഹം ഉണ്ടാകുന്നു. ബള്‍ബിനകത്ത്‌ ധനവൈദ്യുതിപ്രവാഹത്തിന്റെ ദിശ പ്ലേറ്റിൽനിന്ന്‌ ഫിലമെന്റിലേക്കായിരിക്കും.
+
ബിന്ദുവായി പരിഗണിക്കാം. നേര്‍ധാരയില്‍ പ്രവര്‍ത്തിക്കുന്ന വായുശൂന്യമായ വൈദ്യുത ബള്‍ബുകളുടെ ഫിലമെന്റിന്റെ ധനവൈദ്യുതിയുമായി ബന്ധിപ്പിച്ച അറ്റം കൂടുതല്‍ ചൂടാകുന്നതായും വേഗത്തില്‍ മുറിഞ്ഞുപോകുന്നതായും എഡിസണ്‍ ശ്രദ്ധിച്ചു. ധനവൈദ്യുതിയുമായി ബന്ധപ്പെടുത്തിയ മറ്റൊരു പ്ലേറ്റ്‌ ബള്‍ബിനകത്തു വയ്‌ക്കുകയാണെങ്കില്‍ പ്ലേറ്റ്‌ പരിപഥത്തില്‍ക്കൂടി ഒരു വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നതായും അദ്ദേഹം മനസ്സിലാക്കി. ഇതിനാണ്‌ "എഡിസണ്‍ പ്രഭാവം' എന്നുപറയുന്നത്‌. ചൂടായ ഫിലമെന്റില്‍നിന്നും വിമുക്തമാകുന്ന ഇലക്‌ട്രോണുകള്‍ ധനവൈദ്യുതിയാല്‍ ആകര്‍ഷിക്കപ്പെട്ട്‌ പ്ലേറ്റിലെത്തുന്നതുമൂലം ബാഹ്യമായ പ്ലേറ്റ്‌ പരിപഥത്തില്‍ വിപരീത ദിശയില്‍ ഒരു വൈദ്യുതിപ്രവാഹം ഉണ്ടാകുന്നു. ബള്‍ബിനകത്ത്‌ ധനവൈദ്യുതിപ്രവാഹത്തിന്റെ ദിശ പ്ലേറ്റില്‍നിന്ന്‌ ഫിലമെന്റിലേക്കായിരിക്കും.
-
1904-ജോണ്‍ ഫ്‌ളെമിങ്‌ തന്റെ ഡയോഡ്‌ വാൽവിന്‌ പേറ്റെന്റ്‌ എടുത്തു. എഡിസണ്‍ പ്രഭാവം ഉപയോഗിച്ചാണ്‌ ഇതു പ്രവർത്തിക്കുന്നത്‌. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഫിലമെന്റിൽനിന്ന്‌ പ്ലേറ്റിലേക്കു മാത്രമേ പ്രവഹിക്കാന്‍ സാധിക്കുകയുള്ളൂ. വിപരീതദിശയിലേക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹം സാധാരണഗതിയിൽ ഉണ്ടാകുന്നില്ല. ഒരു വശത്തേക്കുമാത്രം വൈദ്യുതി പ്രവഹിപ്പിക്കുന്ന ഒരു കവാടം പോലെ ഈ ഉപകരണം പ്രവർത്തിക്കുന്നു. ഇക്കാരണത്താൽ ഇതിനെ വാൽവ്‌ എന്നുവിളിക്കുന്നു. വായുശൂന്യമാക്കിയ ഒരു ഗ്ലാസ്‌നാളിയിൽ ഫിലമെന്റ്‌, പ്ലേറ്റ്‌ എന്നീ രണ്ട്‌ ഇലക്‌ട്രോഡുകള്‍ സ്ഥിതിചെയ്യുന്നു. തന്മൂലം ഈ ഉപകരണത്തെ ഡയോഡ്‌ വാൽവ്‌ എന്നുപറയുന്നു.
+
1904-ല്‍ ജോണ്‍ ഫ്‌ളെമിങ്‌ തന്റെ ഡയോഡ്‌ വാല്‍വിന്‌ പേറ്റെന്റ്‌ എടുത്തു. എഡിസണ്‍ പ്രഭാവം ഉപയോഗിച്ചാണ്‌ ഇതു പ്രവര്‍ത്തിക്കുന്നത്‌. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഫിലമെന്റില്‍നിന്ന്‌ പ്ലേറ്റിലേക്കു മാത്രമേ പ്രവഹിക്കാന്‍ സാധിക്കുകയുള്ളൂ. വിപരീതദിശയിലേക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹം സാധാരണഗതിയില്‍ ഉണ്ടാകുന്നില്ല. ഒരു വശത്തേക്കുമാത്രം വൈദ്യുതി പ്രവഹിപ്പിക്കുന്ന ഒരു കവാടം പോലെ ഈ ഉപകരണം പ്രവര്‍ത്തിക്കുന്നു. ഇക്കാരണത്താല്‍ ഇതിനെ വാല്‍വ്‌ എന്നുവിളിക്കുന്നു. വായുശൂന്യമാക്കിയ ഒരു ഗ്ലാസ്‌നാളിയില്‍ ഫിലമെന്റ്‌, പ്ലേറ്റ്‌ എന്നീ രണ്ട്‌ ഇലക്‌ട്രോഡുകള്‍ സ്ഥിതിചെയ്യുന്നു. തന്മൂലം ഈ ഉപകരണത്തെ ഡയോഡ്‌ വാല്‍വ്‌ എന്നുപറയുന്നു.
 +
 
 +
പ്ലേറ്റ്‌ ധനാത്മകമായിരിക്കുമ്പോള്‍ മാത്രമേ ഫിലമെന്റില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ പ്ലേറ്റിലെത്തുകയുള്ളൂവെന്നതുകൊണ്ട്‌ പ്ലേറ്റുപരിപഥത്തില്‍ പ്രത്യാവര്‍ത്തിധാര പ്രയോഗിച്ചാല്‍ അത്‌ നേര്‍ധാര ആയി മാറുന്നു. ഈ പ്രവര്‍ത്തനത്തിനു ദിഷ്‌ടകരണം (rectification) എന്നുപറയുന്നു. ആദ്യകാലങ്ങളില്‍ വയര്‍ലസ്‌ സന്ദേശങ്ങള്‍ സ്വീകരിക്കുന്നതിന്‌ ഫ്‌ളെമിങ്‌ വാല്‍വ്‌ ഉപയോഗപ്പെട്ടു. ഇലക്‌ട്രോണികത്തിന്റെ ആദ്യകാലചരിത്രം റേഡിയോയുടെ വികാസവുമായി അഭേദ്യമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.
 +
1906-ല്‍ ലീഡി ഫോറസ്റ്റ്‌ എന്ന അമേരിക്കന്‍ ശാസ്‌ത്രജ്ഞന്‍ പ്ലേറ്റിനും ഫിലമെന്റിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിനു തടസ്സം ഉണ്ടാകാത്തവിധം കമ്പിയഴിപോലുള്ള, ഗ്രിഡ്‌ എന്നു പേരായ മൂന്നാമതൊരു ഇലക്‌ട്രോഡുകൂടി ഉള്‍പ്പെടുത്തിക്കൊണ്ട്‌ ആദ്യത്തെ ട്രയോഡ്‌വാല്‍വ്‌ ഉണ്ടാക്കി. ഗ്രിഡില്‍ ഒരു ചെറിയ വോള്‍ട്ടത പ്രയോഗിച്ച്‌ പ്ലേറ്റ്‌ ധാരയെ ഫലപ്രദമായി നിയന്ത്രിക്കാമെന്ന്‌ അദ്ദേഹം മനസ്സിലാക്കി. ട്രയോഡിന്റെ കണ്ടുപിടിത്തമാണ്‌ ആധുനിക ഇലക്‌ട്രോണിക്‌ യുഗത്തിന്റെ തുടക്കം കുറിച്ചത്‌.
 +
ഇലക്‌ട്രോണിക വാല്‍വുകള്‍ പൊതുവേ നിയന്ത്രിത ചാലകങ്ങളായി പ്രവര്‍ത്തിക്കുന്നു. പുറമേയുള്ള പരിപഥങ്ങളില്‍നിന്നു വ്യത്യസ്‌ത വോള്‍ട്ടതകള്‍ വിവിധ ഇലക്‌ട്രോഡുകളില്‍ പ്രയോഗിക്കുകവഴിയാണ്‌ ഇതു സാധ്യമാകുന്നത്‌. വളരെ ചെറിയ വോള്‍ട്ടതാവ്യതിയാനങ്ങളെ അനേകമടങ്ങ്‌ പ്രവര്‍ധിപ്പിക്കുവാന്‍ ട്രയോഡ്‌ വാല്‍വിനു കഴിവുണ്ട്‌. ഇലക്‌ട്രോണിക്‌ വാല്‍വുകളുപയോഗിച്ച്‌ ഇപ്രകാരമുള്ള പ്രവര്‍ധനം സാധ്യമാക്കുന്ന സംവിധാനത്തെ പ്രവര്‍ധക പരിപഥം എന്നു പറയുന്നു. ഉന്നത ആവൃത്തിയില്‍ സന്തതമായ പ്രത്യാവര്‍ത്തി ഉത്‌പാദിപ്പിക്കാന്‍ ട്രയോഡ്‌വാല്‍വ്‌ ഉപയോഗിക്കാം. ഇവയ്‌ക്ക്‌ ദോലനപരിപഥങ്ങള്‍ (Oscillator circuits) എന്നാണ്‌ പേര്‌. റേഡിയോ തരംഗങ്ങളുടെ ഉത്‌പാദനത്തിന്‌ ഇവ ഉപകരിക്കുന്നു. ഇങ്ങനെ ദീര്‍ഘദൂരം സഞ്ചരിക്കാവുന്ന റേഡിയോ തരംഗങ്ങളെ പ്രവര്‍ധിപ്പിക്കാനും വാല്‍വുകള്‍ ഉപയോഗിക്കാമെന്നു വന്നതോടെ റേഡിയോപ്രക്ഷേപണവും സ്വീകരണവും സാധ്യമായി.
-
പ്ലേറ്റ്‌ ധനാത്മകമായിരിക്കുമ്പോള്‍ മാത്രമേ ഫിലമെന്റിൽനിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ പ്ലേറ്റിലെത്തുകയുള്ളൂവെന്നതുകൊണ്ട്‌ പ്ലേറ്റുപരിപഥത്തിൽ പ്രത്യാവർത്തിധാര പ്രയോഗിച്ചാൽ അത്‌ നേർധാര ആയി മാറുന്നു. ഈ പ്രവർത്തനത്തിനു ദിഷ്‌ടകരണം (rectification) എന്നുപറയുന്നു. ആദ്യകാലങ്ങളിൽ വയർലസ്‌ സന്ദേശങ്ങള്‍ സ്വീകരിക്കുന്നതിന്‌ ഫ്‌ളെമിങ്‌ വാൽവ്‌ ഉപയോഗപ്പെട്ടു. ഇലക്‌ട്രോണികത്തിന്റെ ആദ്യകാലചരിത്രം റേഡിയോയുടെ വികാസവുമായി അഭേദ്യമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.
+
ട്രയോഡിന്റെ നിര്‍മാണത്തെത്തുടര്‍ന്ന്‌ നാല്‌ ഇലക്‌ട്രോഡുകളുള്ള ടെട്രോഡും അഞ്ച്‌ ഇലക്‌ട്രോഡുകളുള്ള പെന്റോഡും  മറ്റു ബഹു-ഇലക്‌ട്രോഡ്‌ വാല്‍വുകളും നിര്‍മിക്കപ്പെട്ടു. കൂടുതല്‍ ഇലക്‌ട്രോഡുകള്‍ പ്രധാനമായും ട്രയോഡിന്റെ ദൂഷ്യങ്ങള്‍ പരിഹരിക്കുന്നതിനും ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിന്റെ നിയന്ത്രണം കൂടുതല്‍ കാര്യക്ഷമമാക്കുന്നതിനും വേണ്ടിയാണ്‌. ഇലക്‌ട്രോണിക പരിപഥങ്ങളുടെ സംവേദനക്ഷമത വര്‍ധിപ്പിക്കുന്നതിനും അവയുടെ ആവൃത്തിമേഖല വിസ്‌തൃതമാക്കുന്നതിനും ഇവ സഹായിച്ചു. ഉന്നതാവൃത്തിയുള്ള റേഡിയോതരംഗങ്ങളുടെ പ്രതിഫലനമുപയോഗിച്ച്‌ അകലെയുള്ള വസ്‌തുക്കളുടെ റേഡിയോസ്ഥാനനിര്‍ണയം (റഡാറിന്റെ പ്രവര്‍ത്തനരീതി) സാധ്യമാണെന്ന്‌ 1935-ല്‍ വാട്‌സണ്‍, വാട്ട്‌ എന്നിവര്‍ തെളിയിച്ചു. താമസിയാതെ റഡാറിന്‌ ഏറ്റവും അനുയോജ്യമായ മൈക്രാതരംഗങ്ങളുത്‌പാദിപ്പിക്കുന്ന മാഗ്നട്രോണ്‍, ക്ലിസ്റ്റ്രാണ്‍ എന്നിവ സംവിധാനം ചെയ്യപ്പെട്ടു. റഡാറാണ്‌ രണ്ടാംലോകയുദ്ധത്തിന്റെ അന്തിമഫലം നിശ്ചയിച്ചത്‌ എന്നുപോലും പറയാവുന്നതാണ്‌.
-
1906-ൽ ലീഡി ഫോറസ്റ്റ്‌ എന്ന അമേരിക്കന്‍ ശാസ്‌ത്രജ്ഞന്‍ പ്ലേറ്റിനും ഫിലമെന്റിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിനു തടസ്സം ഉണ്ടാകാത്തവിധം കമ്പിയഴിപോലുള്ള, ഗ്രിഡ്‌ എന്നു പേരായ മൂന്നാമതൊരു ഇലക്‌ട്രോഡുകൂടി ഉള്‍പ്പെടുത്തിക്കൊണ്ട്‌ ആദ്യത്തെ ട്രയോഡ്‌വാൽവ്‌ ഉണ്ടാക്കി. ഗ്രിഡിൽ ഒരു ചെറിയ വോള്‍ട്ടത പ്രയോഗിച്ച്‌ പ്ലേറ്റ്‌ ധാരയെ ഫലപ്രദമായി നിയന്ത്രിക്കാമെന്ന്‌ അദ്ദേഹം മനസ്സിലാക്കി. ട്രയോഡിന്റെ കണ്ടുപിടിത്തമാണ്‌ ആധുനിക ഇലക്‌ട്രോണിക്‌ യുഗത്തിന്റെ തുടക്കം കുറിച്ചത്‌.
+
-
ഇലക്‌ട്രോണിക വാൽവുകള്‍ പൊതുവേ നിയന്ത്രിത ചാലകങ്ങളായി പ്രവർത്തിക്കുന്നു. പുറമേയുള്ള പരിപഥങ്ങളിൽനിന്നു വ്യത്യസ്‌ത വോള്‍ട്ടതകള്‍ വിവിധ ഇലക്‌ട്രോഡുകളിൽ പ്രയോഗിക്കുകവഴിയാണ്‌ ഇതു സാധ്യമാകുന്നത്‌. വളരെ ചെറിയ വോള്‍ട്ടതാവ്യതിയാനങ്ങളെ അനേകമടങ്ങ്‌ പ്രവർധിപ്പിക്കുവാന്‍ ട്രയോഡ്‌ വാൽവിനു കഴിവുണ്ട്‌. ഇലക്‌ട്രോണിക്‌ വാൽവുകളുപയോഗിച്ച്‌ ഇപ്രകാരമുള്ള പ്രവർധനം സാധ്യമാക്കുന്ന സംവിധാനത്തെ പ്രവർധക പരിപഥം എന്നു പറയുന്നു. ഉന്നത ആവൃത്തിയിൽ സന്തതമായ പ്രത്യാവർത്തി ഉത്‌പാദിപ്പിക്കാന്‍ ട്രയോഡ്‌വാൽവ്‌ ഉപയോഗിക്കാം. ഇവയ്‌ക്ക്‌ ദോലനപരിപഥങ്ങള്‍ (Oscillator circuits) എന്നാണ്‌ പേര്‌. റേഡിയോ തരംഗങ്ങളുടെ ഉത്‌പാദനത്തിന്‌ ഇവ ഉപകരിക്കുന്നു. ഇങ്ങനെ ദീർഘദൂരം സഞ്ചരിക്കാവുന്ന റേഡിയോ തരംഗങ്ങളെ പ്രവർധിപ്പിക്കാനും വാൽവുകള്‍ ഉപയോഗിക്കാമെന്നു വന്നതോടെ റേഡിയോപ്രക്ഷേപണവും സ്വീകരണവും സാധ്യമായി.
+
-
ട്രയോഡിന്റെ നിർമാണത്തെത്തുടർന്ന്‌ നാല്‌ ഇലക്‌ട്രോഡുകളുള്ള ടെട്രോഡും അഞ്ച്‌ ഇലക്‌ട്രോഡുകളുള്ള പെന്റോഡും  മറ്റു ബഹു-ഇലക്‌ട്രോഡ്‌ വാൽവുകളും നിർമിക്കപ്പെട്ടു. കൂടുതൽ ഇലക്‌ട്രോഡുകള്‍ പ്രധാനമായും ട്രയോഡിന്റെ ദൂഷ്യങ്ങള്‍ പരിഹരിക്കുന്നതിനും ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിന്റെ നിയന്ത്രണം കൂടുതൽ കാര്യക്ഷമമാക്കുന്നതിനും വേണ്ടിയാണ്‌. ഇലക്‌ട്രോണിക പരിപഥങ്ങളുടെ സംവേദനക്ഷമത വർധിപ്പിക്കുന്നതിനും അവയുടെ ആവൃത്തിമേഖല വിസ്‌തൃതമാക്കുന്നതിനും ഇവ സഹായിച്ചു. ഉന്നതാവൃത്തിയുള്ള റേഡിയോതരംഗങ്ങളുടെ പ്രതിഫലനമുപയോഗിച്ച്‌ അകലെയുള്ള വസ്‌തുക്കളുടെ റേഡിയോസ്ഥാനനിർണയം (റഡാറിന്റെ പ്രവർത്തനരീതി) സാധ്യമാണെന്ന്‌ 1935-ൽ വാട്‌സണ്‍, വാട്ട്‌ എന്നിവർ തെളിയിച്ചു. താമസിയാതെ റഡാറിന്‌ ഏറ്റവും അനുയോജ്യമായ മൈക്രാതരംഗങ്ങളുത്‌പാദിപ്പിക്കുന്ന മാഗ്നട്രോണ്‍, ക്ലിസ്റ്റ്രാണ്‍ എന്നിവ സംവിധാനം ചെയ്യപ്പെട്ടു. റഡാറാണ്‌ രണ്ടാംലോകയുദ്ധത്തിന്റെ അന്തിമഫലം നിശ്ചയിച്ചത്‌ എന്നുപോലും പറയാവുന്നതാണ്‌.
+
താഴ്‌ന്ന മര്‍ദത്തില്‍ ഹീലിയം, നിയോണ്‍ തുടങ്ങിയ വാതകങ്ങള്‍ നിറച്ച വാല്‍വുകള്‍ വോള്‍ട്ടതാനിയന്ത്രണത്തിനും മറ്റുമായി ഉപയോഗിക്കുന്നുണ്ട്‌. ഇവയെ പൊതുവേ ഗ്യാസ്‌ട്യൂബുകള്‍ എന്നുപറയുന്നു.
-
താഴ്‌ന്ന മർദത്തിൽ ഹീലിയം, നിയോണ്‍ തുടങ്ങിയ വാതകങ്ങള്‍ നിറച്ച വാൽവുകള്‍ വോള്‍ട്ടതാനിയന്ത്രണത്തിനും മറ്റുമായി ഉപയോഗിക്കുന്നുണ്ട്‌. ഇവയെ പൊതുവേ ഗ്യാസ്‌ട്യൂബുകള്‍ എന്നുപറയുന്നു.
+
1948-ല്‍ യു.എസ്സിലെ ബെല്‍ ടെലിഫോണ്‍ ലബോറട്ടറിയില്‍ വച്ച്‌ ബ്രാറ്റയ്‌ന്‍, ബാര്‍ഡീന്‍, ഷോക്ക്‌ലി എന്നിവര്‍ ചേര്‍ന്ന്‌ ട്രോന്‍സിസ്റ്റര്‍ എന്നൊരു ചെറിയ ഉപകരണം കണ്ടുപിടിച്ചു. ഇത്‌ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തില്‍ നിര്‍ണായകമായ വഴിത്തിരിവായിരുന്നു. ട്രോന്‍സ്‌ഫര്‍, റെസിസ്റ്റര്‍ എന്നീ രണ്ടു പദങ്ങളുടെ സംയോജനംകൊണ്ടാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ എന്ന വാക്കുണ്ടായിരിക്കുന്നത്‌. ജര്‍മേനിയം, സിലിക്കോണ്‍ തുടങ്ങിയ അര്‍ധചാലകവസ്‌തുക്കളാല്‍ നിര്‍മിതമായ ട്രോന്‍സിസ്റ്റര്‍ ഇലക്‌ട്രോണിക വാല്‍വുകളുടെ പ്രവര്‍ത്തനങ്ങളെല്ലാം ചെയ്യാന്‍ സമര്‍ഥമായ ഒരു ചെറിയ വസ്‌തുവാണ്‌. ഉയര്‍ന്ന വൈദ്യുതപവര്‍ കൈകാര്യം ചെയ്യേണ്ട സന്ദര്‍ഭങ്ങളിലൊഴികെ മിക്ക രംഗങ്ങളിലും ഇന്ന്‌ വാല്‍വുകള്‍ക്കുപകരം ട്രോന്‍സിസ്റ്റര്‍ ഉപയോഗിച്ചുവരുന്നു. ഒതുക്കം, ആയുര്‍ദൈര്‍ഘ്യം, ആഘാതങ്ങളെയും കമ്പനങ്ങളെയും ചെറുത്തുനില്‌ക്കുവാനുള്ള കഴിവ്‌, വളരെ കുറഞ്ഞ താപവികിരണം, കുറഞ്ഞ വോള്‍ട്ടതയില്‍ പ്രവര്‍ത്തിക്കുവാനുള്ള കഴിവ്‌ എന്നിങ്ങനെ വളരെയേറെ ഗുണങ്ങള്‍ വാല്‍വുകളെ അപേക്ഷിച്ച്‌ ട്രോന്‍സിസ്റ്ററുകള്‍ക്കുണ്ട്‌. ട്രോന്‍സിസ്റ്ററുകളുടെ ആവിര്‍ഭാവത്തോടെ ഇലക്‌ട്രോണികോപകരണങ്ങള്‍ ഒതുക്കമുള്ളതും കൊണ്ടുനടക്കാവുന്നതും ആയിത്തീര്‍ന്നു.
-
1948-ൽ യു.എസ്സിലെ ബെൽ ടെലിഫോണ്‍ ലബോറട്ടറിയിൽ വച്ച്‌ ബ്രാറ്റയ്‌ന്‍, ബാർഡീന്‍, ഷോക്ക്‌ലി എന്നിവർ ചേർന്ന്‌ ട്രോന്‍സിസ്റ്റർ എന്നൊരു ചെറിയ ഉപകരണം കണ്ടുപിടിച്ചു. ഇത്‌ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തിൽ നിർണായകമായ വഴിത്തിരിവായിരുന്നു. ട്രോന്‍സ്‌ഫർ, റെസിസ്റ്റർ എന്നീ രണ്ടു പദങ്ങളുടെ സംയോജനംകൊണ്ടാണ്‌ ട്രോന്‍സിസ്റ്റർ എന്ന വാക്കുണ്ടായിരിക്കുന്നത്‌. ജർമേനിയം, സിലിക്കോണ്‍ തുടങ്ങിയ അർധചാലകവസ്‌തുക്കളാൽ നിർമിതമായ ട്രോന്‍സിസ്റ്റർ ഇലക്‌ട്രോണിക വാൽവുകളുടെ പ്രവർത്തനങ്ങളെല്ലാം ചെയ്യാന്‍ സമർഥമായ ഒരു ചെറിയ വസ്‌തുവാണ്‌. ഉയർന്ന വൈദ്യുതപവർ കൈകാര്യം ചെയ്യേണ്ട സന്ദർഭങ്ങളിലൊഴികെ മിക്ക രംഗങ്ങളിലും ഇന്ന്‌ വാൽവുകള്‍ക്കുപകരം ട്രോന്‍സിസ്റ്റർ ഉപയോഗിച്ചുവരുന്നു. ഒതുക്കം, ആയുർദൈർഘ്യം, ആഘാതങ്ങളെയും കമ്പനങ്ങളെയും ചെറുത്തുനില്‌ക്കുവാനുള്ള കഴിവ്‌, വളരെ കുറഞ്ഞ താപവികിരണം, കുറഞ്ഞ വോള്‍ട്ടതയിൽ പ്രവർത്തിക്കുവാനുള്ള കഴിവ്‌ എന്നിങ്ങനെ വളരെയേറെ ഗുണങ്ങള്‍ വാൽവുകളെ അപേക്ഷിച്ച്‌ ട്രോന്‍സിസ്റ്ററുകള്‍ക്കുണ്ട്‌. ട്രോന്‍സിസ്റ്ററുകളുടെ ആവിർഭാവത്തോടെ ഇലക്‌ട്രോണികോപകരണങ്ങള്‍ ഒതുക്കമുള്ളതും കൊണ്ടുനടക്കാവുന്നതും ആയിത്തീർന്നു.
+
ട്രോന്‍സിസ്റ്ററിന്റെ കണ്ടുപിടിത്തത്തെത്തുടര്‍ന്ന്‌ അര്‍ധചാലകവസ്‌തുക്കളുടെ വൈദ്യുതഗുണങ്ങളെക്കുറിച്ച്‌ സമഗ്രമായ പരീക്ഷണങ്ങള്‍ ലോകത്തെമ്പാടുമുള്ള ഗവേഷണസ്ഥാപനങ്ങളില്‍ പൂര്‍വാധികം താത്‌പര്യത്തോടെ നടത്തപ്പെട്ടു. അര്‍ധചാലകഭൗതികത്തിലുണ്ടായ ഈ പുരോഗതിയുടെ ഫലമായി നിശ്ചിത ഉദ്ദേശ്യങ്ങളോടുകൂടിയ അനേകം പ്രത്യേകതരം അര്‍ധചാലകോപാധികള്‍ നിര്‍മിതമായി. സെനര്‍ ഡയോഡ്‌, വാരക്‌റ്റര്‍ (വോള്‍ട്ടതാ നിയന്ത്രിത കപ്പാസിറ്റര്‍), നിയന്ത്രിത റെക്‌റ്റിഫയറുകള്‍, യൂണിജങ്‌ഷന്‍ ട്രോന്‍സിസ്റ്റര്‍, ഫീല്‍ഡ്‌ ഇഫക്‌റ്റ്‌ ട്രോന്‍സിസ്റ്റര്‍, ഫൊട്ടോഡയോഡ്‌, ലൈറ്റ്‌ എമിറ്റിങ്‌ ഡയോഡ്‌, ബൈ ഡയറക്‌ഷണല്‍ ട്രോന്‍സിസ്റ്റര്‍ തുടങ്ങിയവ ഇവയില്‍പ്പെടുന്നു. അത്യുന്നതാവൃത്തിയിലും മൈക്രാതരംഗമേഖലകളിലും പ്രവര്‍ത്തിക്കുന്ന ഖരാവസ്ഥോപാധികള്‍ ഇന്നു ലഭ്യമാണ്‌. ഇങ്ങനെ ഖരാവസ്ഥാഭൗതികം ഇന്ന്‌ ആധുനിക ഇലക്‌ട്രോണികരംഗത്ത്‌ വമ്പിച്ച പരിവര്‍ത്തനങ്ങള്‍ വരുത്തിയിരിക്കുന്നു.
-
ട്രോന്‍സിസ്റ്ററിന്റെ കണ്ടുപിടിത്തത്തെത്തുടർന്ന്‌ അർധചാലകവസ്‌തുക്കളുടെ വൈദ്യുതഗുണങ്ങളെക്കുറിച്ച്‌ സമഗ്രമായ പരീക്ഷണങ്ങള്‍ ലോകത്തെമ്പാടുമുള്ള ഗവേഷണസ്ഥാപനങ്ങളിൽ പൂർവാധികം താത്‌പര്യത്തോടെ നടത്തപ്പെട്ടു. അർധചാലകഭൗതികത്തിലുണ്ടായ ഈ പുരോഗതിയുടെ ഫലമായി നിശ്ചിത ഉദ്ദേശ്യങ്ങളോടുകൂടിയ അനേകം പ്രത്യേകതരം അർധചാലകോപാധികള്‍ നിർമിതമായി. സെനർ ഡയോഡ്‌, വാരക്‌റ്റർ (വോള്‍ട്ടതാ നിയന്ത്രിത കപ്പാസിറ്റർ), നിയന്ത്രിത റെക്‌റ്റിഫയറുകള്‍, യൂണിജങ്‌ഷന്‍ ട്രോന്‍സിസ്റ്റർ, ഫീൽഡ്‌ ഇഫക്‌റ്റ്‌ ട്രോന്‍സിസ്റ്റർ, ഫൊട്ടോഡയോഡ്‌, ലൈറ്റ്‌ എമിറ്റിങ്‌ ഡയോഡ്‌, ബൈ ഡയറക്‌ഷണൽ ട്രോന്‍സിസ്റ്റർ തുടങ്ങിയവ ഇവയിൽപ്പെടുന്നു. അത്യുന്നതാവൃത്തിയിലും മൈക്രാതരംഗമേഖലകളിലും പ്രവർത്തിക്കുന്ന ഖരാവസ്ഥോപാധികള്‍ ഇന്നു ലഭ്യമാണ്‌. ഇങ്ങനെ ഖരാവസ്ഥാഭൗതികം ഇന്ന്‌ ആധുനിക ഇലക്‌ട്രോണികരംഗത്ത്‌ വമ്പിച്ച പരിവർത്തനങ്ങള്‍ വരുത്തിയിരിക്കുന്നു.
+
സൂക്ഷ്‌മവത്‌കരണത്തിനുള്ള പ്രവണത തുടര്‍ന്നതിന്റെ  ഫലമായി സമകാലിത പരിപഥങ്ങള്‍ (ഐസി) രംഗത്തുവന്നു. ട്രോന്‍സിസ്റ്ററുകള്‍, ഡയോഡുകള്‍, റെസിസ്റ്ററുകള്‍ തുടങ്ങിയ അനേകം  ഘടകങ്ങള്‍ ഒരൊറ്റ അര്‍ധചാലകത്തുണ്ടിന്മേല്‍ത്തന്നെ ഒരേസമയം വിന്യസിപ്പിച്ചു ചേര്‍ത്തുണ്ടാക്കിയ സമ്പൂര്‍ണ പരിപഥങ്ങളടങ്ങിയ ഇലക്‌ട്രോണികോപാധിയാണ്‌ ഐസി കംപ്യൂട്ടറുകളിലും ഇലക്‌ട്രോണിക്‌ കാല്‍ക്കുലേറ്ററുകളിലും ഇവ ധാരാളമായി ഉപയോഗിച്ചുവരുന്നു. ഉപകരണങ്ങളുടെ വലുപ്പത്തെ കാര്യമായി കുറയ്‌ക്കുന്നതിന്‌ ഇതുകൊണ്ട്‌ കഴിയുന്നു. മാത്രമല്ല, വന്‍തോതില്‍ നിര്‍മിക്കുന്നതിലുള്ള എളുപ്പംനിമിത്തം ഇവയുടെ വിലയും വളരെ കുറവാണ്‌. ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ സാധ്യതകളും കാര്യക്ഷമതയും വര്‍ധിപ്പിക്കുന്നതിനും അവ വളരെ ഒതുക്കമുള്ളതും വിശ്വസനീയവും ആക്കിത്തീര്‍ക്കുന്നതിനും ഈ പുരോഗതി കാര്യമായി സഹായിച്ചിട്ടുണ്ട്‌. വോള്‍ട്ട്‌മീറ്റര്‍, അമീറ്റര്‍ തുടങ്ങിയ പല പരിമാണോപകരണങ്ങളുടെ നിര്‍ഗമ മാപനമൂല്യം അക്കത്തില്‍ത്തന്നെ കാണിക്കുന്ന "ഡിജിറ്റല്‍ റീഡ്‌ ഔട്ട്‌' ഉള്ളവയായി രൂപപ്പെടുത്താന്‍ ഐസികള്‍ സഹായമായി.
-
സൂക്ഷ്‌മവത്‌കരണത്തിനുള്ള പ്രവണത തുടർന്നതിന്റെ  ഫലമായി സമകാലിത പരിപഥങ്ങള്‍ (ഐസി) രംഗത്തുവന്നു. ട്രോന്‍സിസ്റ്ററുകള്‍, ഡയോഡുകള്‍, റെസിസ്റ്ററുകള്‍ തുടങ്ങിയ അനേകം  ഘടകങ്ങള്‍ ഒരൊറ്റ അർധചാലകത്തുണ്ടിന്മേൽത്തന്നെ ഒരേസമയം വിന്യസിപ്പിച്ചു ചേർത്തുണ്ടാക്കിയ സമ്പൂർണ പരിപഥങ്ങളടങ്ങിയ ഇലക്‌ട്രോണികോപാധിയാണ്‌ ഐസി കംപ്യൂട്ടറുകളിലും ഇലക്‌ട്രോണിക്‌ കാൽക്കുലേറ്ററുകളിലും ഇവ ധാരാളമായി ഉപയോഗിച്ചുവരുന്നു. ഉപകരണങ്ങളുടെ വലുപ്പത്തെ കാര്യമായി കുറയ്‌ക്കുന്നതിന്‌ ഇതുകൊണ്ട്‌ കഴിയുന്നു. മാത്രമല്ല, വന്‍തോതിൽ നിർമിക്കുന്നതിലുള്ള എളുപ്പംനിമിത്തം ഇവയുടെ വിലയും വളരെ കുറവാണ്‌. ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ സാധ്യതകളും കാര്യക്ഷമതയും വർധിപ്പിക്കുന്നതിനും അവ വളരെ ഒതുക്കമുള്ളതും വിശ്വസനീയവും ആക്കിത്തീർക്കുന്നതിനും ഈ പുരോഗതി കാര്യമായി സഹായിച്ചിട്ടുണ്ട്‌. വോള്‍ട്ട്‌മീറ്റർ, അമീറ്റർ തുടങ്ങിയ പല പരിമാണോപകരണങ്ങളുടെ നിർഗമ മാപനമൂല്യം അക്കത്തിൽത്തന്നെ കാണിക്കുന്ന "ഡിജിറ്റൽ റീഡ്‌ ഔട്ട്‌' ഉള്ളവയായി രൂപപ്പെടുത്താന്‍ ഐസികള്‍ സഹായമായി.
+
മേസര്‍, ലേസര്‍ എന്നീ ഉപകരണങ്ങളുടെ ആവിര്‍ഭാവത്തോടുകൂടി ക്വാണ്ടം ഇലക്‌ട്രോണികം എന്നൊരു ശാഖകൂടി ആധുനിക ഇലക്‌ട്രോണികത്തിനുണ്ടായി. തന്മാത്രകളുടെ കമ്പനസ്‌തരങ്ങള്‍, അര്‍ധചാലകങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും ഊര്‍ജസ്‌തരങ്ങള്‍ തുടങ്ങിയ ക്വാണ്ടീകൃത സിസ്റ്റങ്ങളും ഇലക്‌ട്രോണികരീതികളും തമ്മിലുള്ള സംയോജനഫലമായുടലെടുത്തതാണ്‌ ക്വാണ്ടം ഇലക്‌ട്രോണികം. ഇതുമൂലം ഇലക്‌ട്രോണികരീതികളുടെ ഉപര്യാവൃത്തിസീമ ഇന്‍ഫ്രാറെഡ്‌-ദൃശ്യതരംഗമേഖലകളിലേക്കും കൂടി വ്യാപിച്ചിരിക്കുന്നതായി കരുതാം.
-
മേസർ, ലേസർ എന്നീ ഉപകരണങ്ങളുടെ ആവിർഭാവത്തോടുകൂടി ക്വാണ്ടം ഇലക്‌ട്രോണികം എന്നൊരു ശാഖകൂടി ആധുനിക ഇലക്‌ട്രോണികത്തിനുണ്ടായി. തന്മാത്രകളുടെ കമ്പനസ്‌തരങ്ങള്‍, അർധചാലകങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും ഊർജസ്‌തരങ്ങള്‍ തുടങ്ങിയ ക്വാണ്ടീകൃത സിസ്റ്റങ്ങളും ഇലക്‌ട്രോണികരീതികളും തമ്മിലുള്ള സംയോജനഫലമായുടലെടുത്തതാണ്‌ ക്വാണ്ടം ഇലക്‌ട്രോണികം. ഇതുമൂലം ഇലക്‌ട്രോണികരീതികളുടെ ഉപര്യാവൃത്തിസീമ ഇന്‍ഫ്രാറെഡ്‌-ദൃശ്യതരംഗമേഖലകളിലേക്കും കൂടി വ്യാപിച്ചിരിക്കുന്നതായി കരുതാം.
 
== ഇലക്‌ട്രോണികം-ഉപയോഗങ്ങള്‍==
== ഇലക്‌ട്രോണികം-ഉപയോഗങ്ങള്‍==
-
വാർത്താവിനിമയം, ഗതാഗതം, ബഹിരാകാശപര്യവേക്ഷണം, ശുദ്ധവും പ്രയുക്തവുമായ ഗവേഷണമേഖലകള്‍ എന്നീ മണ്ഡലങ്ങളിലെല്ലാംതന്നെ ഇലക്‌ട്രോണികം അദ്വിതീയമായ സ്ഥാനം കരസ്ഥമാക്കിയിരിക്കുന്നു. ചികിത്സാരംഗത്തും വ്യാവസായ രംഗത്തും രാജ്യരക്ഷ പ്രതിരോധമേഖലകളിലുമെല്ലാം ഇലക്‌ട്രോണികം വരുത്തിയ മാറ്റങ്ങള്‍ വിപ്ലവകരമാണ്‌.  
+
വാര്‍ത്താവിനിമയം, ഗതാഗതം, ബഹിരാകാശപര്യവേക്ഷണം, ശുദ്ധവും പ്രയുക്തവുമായ ഗവേഷണമേഖലകള്‍ എന്നീ മണ്ഡലങ്ങളിലെല്ലാംതന്നെ ഇലക്‌ട്രോണികം അദ്വിതീയമായ സ്ഥാനം കരസ്ഥമാക്കിയിരിക്കുന്നു. ചികിത്സാരംഗത്തും വ്യാവസായ രംഗത്തും രാജ്യരക്ഷ പ്രതിരോധമേഖലകളിലുമെല്ലാം ഇലക്‌ട്രോണികം വരുത്തിയ മാറ്റങ്ങള്‍ വിപ്ലവകരമാണ്‌.  
=== വൈദ്യശാസ്‌ത്രം===
=== വൈദ്യശാസ്‌ത്രം===
-
ഇലക്‌ട്രോണികരീതികളുടെ ഉപയോഗംകൊണ്ടു നേട്ടങ്ങളുണ്ടായിട്ടുള്ള ഒന്നാണ്‌ വൈദ്യശുശ്രൂഷാരംഗം. രോഗനിർണയത്തിനും നിർണായക ഘട്ടങ്ങളിൽ രോഗിയുടെ ശാരീരികപ്രവർത്തനങ്ങള്‍ നിരന്തരം നിരീക്ഷിച്ചു കൊണ്ടിരിക്കുന്നതിനും ആപദ്‌ഘട്ടങ്ങളിൽ ഡോക്‌ടർക്കു മുന്നറിയിപ്പു കൊടുക്കുന്നതിനും മറ്റുമായി ഇലക്‌ട്രോണികരീതികള്‍ ഇന്നുപയോഗപ്പെടുത്തിവരുന്നുണ്ട്‌. ഹൃദയത്തിന്റെ പ്രവർത്തനം പരിശോധിക്കുന്നതിനുള്ള ഇലക്‌ട്രോകാർഡിയോഗ്രാഫ്‌, തലച്ചോറിന്റെ വൈദ്യുതക്രിയാശീലത നിരീക്ഷിക്കാനുതകുന്ന ഇലക്‌ട്രോ എന്‍സെഫലോഗ്രാം, രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ അളവ്‌ കണക്കാക്കുന്നതിനുള്ള ബ്ലഡ്‌-ഗ്ലൂക്കോസ്‌ മോണിറ്റർ തുടങ്ങിയവയുടെ ഉപയോഗം ഇന്നു സർവസാധാരണമായിരിക്കുന്നു. കംപ്യൂട്ടറുകളുടെ സഹായത്തോടുകൂടിയ രോഗനിർണയവും ചികിത്സാവിധികളും നടപ്പിൽ വന്നുകഴിഞ്ഞിട്ടുണ്ട്‌. നോ. ഇലക്‌ട്രോ ഡയഗ്നോസിസ്‌
+
ഇലക്‌ട്രോണികരീതികളുടെ ഉപയോഗംകൊണ്ടു നേട്ടങ്ങളുണ്ടായിട്ടുള്ള ഒന്നാണ്‌ വൈദ്യശുശ്രൂഷാരംഗം. രോഗനിര്‍ണയത്തിനും നിര്‍ണായക ഘട്ടങ്ങളില്‍ രോഗിയുടെ ശാരീരികപ്രവര്‍ത്തനങ്ങള്‍ നിരന്തരം നിരീക്ഷിച്ചു കൊണ്ടിരിക്കുന്നതിനും ആപദ്‌ഘട്ടങ്ങളില്‍ ഡോക്‌ടര്‍ക്കു മുന്നറിയിപ്പു കൊടുക്കുന്നതിനും മറ്റുമായി ഇലക്‌ട്രോണികരീതികള്‍ ഇന്നുപയോഗപ്പെടുത്തിവരുന്നുണ്ട്‌. ഹൃദയത്തിന്റെ പ്രവര്‍ത്തനം പരിശോധിക്കുന്നതിനുള്ള ഇലക്‌ട്രോകാര്‍ഡിയോഗ്രാഫ്‌, തലച്ചോറിന്റെ വൈദ്യുതക്രിയാശീലത നിരീക്ഷിക്കാനുതകുന്ന ഇലക്‌ട്രോ എന്‍സെഫലോഗ്രാം, രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ അളവ്‌ കണക്കാക്കുന്നതിനുള്ള ബ്ലഡ്‌-ഗ്ലൂക്കോസ്‌ മോണിറ്റര്‍ തുടങ്ങിയവയുടെ ഉപയോഗം ഇന്നു സര്‍വസാധാരണമായിരിക്കുന്നു. കംപ്യൂട്ടറുകളുടെ സഹായത്തോടുകൂടിയ രോഗനിര്‍ണയവും ചികിത്സാവിധികളും നടപ്പില്‍ വന്നുകഴിഞ്ഞിട്ടുണ്ട്‌. നോ. ഇലക്‌ട്രോ ഡയഗ്നോസിസ്‌
=== വ്യവസായം===
=== വ്യവസായം===
-
ആധുനികവ്യവസായരംഗത്ത്‌ ഇലക്‌ട്രോണികത്തിനുള്ള സ്ഥാനം പ്രത്യേകം എടുത്തുപറയേണ്ട ആവശ്യമില്ല. വ്യവസായരംഗത്തെ പുരോഗതി ഇലക്‌ട്രോണികത്തിന്റെ വികാസവുമായി നേരിട്ടു ബന്ധപ്പെട്ടിരിക്കുന്നു. ഇലക്‌ട്രോണിക നിയന്ത്രണങ്ങളും കംപ്യൂട്ടറുമാണ്‌ വ്യവസായരംഗത്തെ യന്ത്രവത്‌കരണത്തിന്‌ അടിസ്ഥാനമായി വർത്തിക്കുന്നത്‌. ഇതിനുപുറമേ മാനേജ്‌മെന്റ്‌മേഖലകളിലും കംപ്യൂട്ടറുകള്‍ ഉപയോഗിച്ചുവരുന്നു.
+
ആധുനികവ്യവസായരംഗത്ത്‌ ഇലക്‌ട്രോണികത്തിനുള്ള സ്ഥാനം പ്രത്യേകം എടുത്തുപറയേണ്ട ആവശ്യമില്ല. വ്യവസായരംഗത്തെ പുരോഗതി ഇലക്‌ട്രോണികത്തിന്റെ വികാസവുമായി നേരിട്ടു ബന്ധപ്പെട്ടിരിക്കുന്നു. ഇലക്‌ട്രോണിക നിയന്ത്രണങ്ങളും കംപ്യൂട്ടറുമാണ്‌ വ്യവസായരംഗത്തെ യന്ത്രവത്‌കരണത്തിന്‌ അടിസ്ഥാനമായി വര്‍ത്തിക്കുന്നത്‌. ഇതിനുപുറമേ മാനേജ്‌മെന്റ്‌മേഖലകളിലും കംപ്യൂട്ടറുകള്‍ ഉപയോഗിച്ചുവരുന്നു.
=== പ്രതിരോധം===
=== പ്രതിരോധം===
-
ഇലക്‌ട്രോണിക സാങ്കേതികതയെ അവലംബിക്കുന്ന ഉപകരണങ്ങളും ഉപായ(techniques)ങ്ങളും ഉപയോഗിച്ച്‌ ശത്രുവിന്റെ പോർവിമാനം, റഡാർ, മിസൈലുകള്‍ തുടങ്ങിയ വിനാശകാരികളെ പ്രതിരോധിക്കുന്നതും ശത്രുപക്ഷം റേഡിയോതരംഗങ്ങള്‍ വഴി കൈമാറുന്ന നിർദേശങ്ങള്‍, സന്ദേശങ്ങള്‍, സൈനികനീക്കങ്ങളെ സംബന്ധിച്ച വിവരങ്ങള്‍ തുടങ്ങിയവ ചോർത്തിയെടുക്കുന്നതും ഇപ്പോള്‍ യുദ്ധരംഗത്തെ അനിവാര്യമായ നടപടിയായി മാറിയിരിക്കുന്നു. ഈദൃശ യുദ്ധമുറകളെ മൊത്തത്തിൽ ഇലക്‌ട്രോണിക പ്രതിയുക്തി (Electronic Counter Measures-ECM) എന്നു വിശേഷിപ്പിക്കുന്നു. വാർത്താവിനിമയം, മാർഗനിർദേശം, കണ്ടെത്തലും തുമ്പുണ്ടാക്കലും, നിയന്ത്രണം തുടങ്ങിയവയ്‌ക്കുള്ള ആധുനികസംവിധാനങ്ങള്‍ പ്രാകാശിക(optic)സങ്കേതങ്ങളെ, വിശിഷ്യ നഗ്നനേത്രങ്ങള്‍ക്കു അഗോചരമായ ഇന്‍ഫ്രാറെഡ്‌ (infrared) വികിരണത്തെ അത്യധികം ആശ്രയിക്കുന്ന അവസ്ഥയാണ്‌ ഇപ്പോഴുള്ളത്‌. ഇത്തരത്തിലുള്ള പ്രതിയുക്തിവ്യവസ്ഥ ഇലക്‌ട്രോണിക സങ്കേതങ്ങള്‍ക്കുമുപരി വിദ്യുത്‌കാന്തിക വർണരാജിയുടെ സങ്കീർണവും വ്യാപകവുമായ മൊത്തം സാധ്യതകളെയും പ്രയോജനപ്പെടുത്തുന്നു.
+
ഇലക്‌ട്രോണിക സാങ്കേതികതയെ അവലംബിക്കുന്ന ഉപകരണങ്ങളും ഉപായ(techniques)ങ്ങളും ഉപയോഗിച്ച്‌ ശത്രുവിന്റെ പോര്‍വിമാനം, റഡാര്‍, മിസൈലുകള്‍ തുടങ്ങിയ വിനാശകാരികളെ പ്രതിരോധിക്കുന്നതും ശത്രുപക്ഷം റേഡിയോതരംഗങ്ങള്‍ വഴി കൈമാറുന്ന നിര്‍ദേശങ്ങള്‍, സന്ദേശങ്ങള്‍, സൈനികനീക്കങ്ങളെ സംബന്ധിച്ച വിവരങ്ങള്‍ തുടങ്ങിയവ ചോര്‍ത്തിയെടുക്കുന്നതും ഇപ്പോള്‍ യുദ്ധരംഗത്തെ അനിവാര്യമായ നടപടിയായി മാറിയിരിക്കുന്നു. ഈദൃശ യുദ്ധമുറകളെ മൊത്തത്തില്‍ ഇലക്‌ട്രോണിക പ്രതിയുക്തി (Electronic Counter Measures-ECM) എന്നു വിശേഷിപ്പിക്കുന്നു. വാര്‍ത്താവിനിമയം, മാര്‍ഗനിര്‍ദേശം, കണ്ടെത്തലും തുമ്പുണ്ടാക്കലും, നിയന്ത്രണം തുടങ്ങിയവയ്‌ക്കുള്ള ആധുനികസംവിധാനങ്ങള്‍ പ്രാകാശിക(optic)സങ്കേതങ്ങളെ, വിശിഷ്യ നഗ്നനേത്രങ്ങള്‍ക്കു അഗോചരമായ ഇന്‍ഫ്രാറെഡ്‌ (infrared) വികിരണത്തെ അത്യധികം ആശ്രയിക്കുന്ന അവസ്ഥയാണ്‌ ഇപ്പോഴുള്ളത്‌. ഇത്തരത്തിലുള്ള പ്രതിയുക്തിവ്യവസ്ഥ ഇലക്‌ട്രോണിക സങ്കേതങ്ങള്‍ക്കുമുപരി വിദ്യുത്‌കാന്തിക വര്‍ണരാജിയുടെ സങ്കീര്‍ണവും വ്യാപകവുമായ മൊത്തം സാധ്യതകളെയും പ്രയോജനപ്പെടുത്തുന്നു.
-
ലോകത്തിലെ വന്‍കിട സൈനികശക്തികള്‍ ആക്രമണപ്രതിരോധസജ്ജീകരണങ്ങള്‍ക്കായി വിദ്യുത്‌കാന്തിക സങ്കേതങ്ങളെ ഏതളവിൽ ഉപയോഗിക്കുന്നുവെന്നതും, കൂടുതൽ മെച്ചപ്പെട്ട പ്രയോജനം കൈവരുത്തുവാന്‍ എന്തുമാത്രം ഗവേഷണപഠനങ്ങളിൽ ഏർപ്പെട്ടിരിക്കുന്നുവെന്നതും "ഇലക്‌ട്രോണിക യുദ്ധമുറ' എന്ന സംജ്ഞയുടെ പരിധിയിൽപ്പെടുന്ന വിഷയങ്ങളാണ്‌. പരസ്‌പരം യുദ്ധത്തിലേർപ്പെടുമ്പോള്‍ മാത്രമല്ല, സമാധാനകാലത്തുപോലും ഇലക്‌ട്രോണിക യുദ്ധതന്ത്രം വികസിപ്പിക്കുവാനുള്ള തീവ്രശ്രമം സൈനികശക്തികള്‍ സദാ പിന്തുടർന്നുകൊണ്ടിരിക്കുന്നു. ഗൂഢവും നിശ്ശബ്‌ദവും അതിവ്യാപകവുമായ ഒരു കർമമണ്ഡലമാണ്‌ ഇലക്‌ട്രോണിക യുദ്ധമുറ.
+
ലോകത്തിലെ വന്‍കിട സൈനികശക്തികള്‍ ആക്രമണപ്രതിരോധസജ്ജീകരണങ്ങള്‍ക്കായി വിദ്യുത്‌കാന്തിക സങ്കേതങ്ങളെ ഏതളവില്‍ ഉപയോഗിക്കുന്നുവെന്നതും, കൂടുതല്‍ മെച്ചപ്പെട്ട പ്രയോജനം കൈവരുത്തുവാന്‍ എന്തുമാത്രം ഗവേഷണപഠനങ്ങളില്‍ ഏര്‍പ്പെട്ടിരിക്കുന്നുവെന്നതും "ഇലക്‌ട്രോണിക യുദ്ധമുറ' എന്ന സംജ്ഞയുടെ പരിധിയില്‍പ്പെടുന്ന വിഷയങ്ങളാണ്‌. പരസ്‌പരം യുദ്ധത്തിലേര്‍പ്പെടുമ്പോള്‍ മാത്രമല്ല, സമാധാനകാലത്തുപോലും ഇലക്‌ട്രോണിക യുദ്ധതന്ത്രം വികസിപ്പിക്കുവാനുള്ള തീവ്രശ്രമം സൈനികശക്തികള്‍ സദാ പിന്തുടര്‍ന്നുകൊണ്ടിരിക്കുന്നു. ഗൂഢവും നിശ്ശബ്‌ദവും അതിവ്യാപകവുമായ ഒരു കര്‍മമണ്ഡലമാണ്‌ ഇലക്‌ട്രോണിക യുദ്ധമുറ.
-
=== വാർത്താവിനിമയം===
+
=== വാര്‍ത്താവിനിമയം===
-
ആധുനിക വാർത്താവിനിമയരംഗത്തിന്റെ മുഖച്ഛായ തന്നെ മാറ്റിയത്‌ ഇലക്‌ട്രോണിക രംഗത്തുണ്ടായ നൂതന കണ്ടുപിടിത്തങ്ങളാണ്‌. മൊബൈൽ ഫോണും ഇന്റർനെറ്റും മനുഷ്യജീവിത രീതികളെത്തന്നെ മാറ്റിമറിച്ചു. പഴയകാല ലൈന്‍ കമ്യൂണിക്കേഷനും ആധുനിക വയർലെസ്‌ സാങ്കേതികവിദ്യയും വാർത്താവിനിമയ രംഗത്തുണ്ടാക്കിയ മാറ്റങ്ങള്‍ വിപ്ലവാത്മകമാണ്‌. നോ. ഇലക്‌ട്രോണിക-വാർത്താവിനിമയം
+
ആധുനിക വാര്‍ത്താവിനിമയരംഗത്തിന്റെ മുഖച്ഛായ തന്നെ മാറ്റിയത്‌ ഇലക്‌ട്രോണിക രംഗത്തുണ്ടായ നൂതന കണ്ടുപിടിത്തങ്ങളാണ്‌. മൊബൈല്‍ ഫോണും ഇന്റര്‍നെറ്റും മനുഷ്യജീവിത രീതികളെത്തന്നെ മാറ്റിമറിച്ചു. പഴയകാല ലൈന്‍ കമ്യൂണിക്കേഷനും ആധുനിക വയര്‍ലെസ്‌ സാങ്കേതികവിദ്യയും വാര്‍ത്താവിനിമയ രംഗത്തുണ്ടാക്കിയ മാറ്റങ്ങള്‍ വിപ്ലവാത്മകമാണ്‌. നോ. ഇലക്‌ട്രോണിക-വാര്‍ത്താവിനിമയം
(ഡോ. സി.പി. ഗിരിജാവല്ലഭന്‍;  പ്രാഫ. കെ. പാപ്പൂട്ടി; സ.പ.)
(ഡോ. സി.പി. ഗിരിജാവല്ലഭന്‍;  പ്രാഫ. കെ. പാപ്പൂട്ടി; സ.പ.)

Current revision as of 09:42, 11 സെപ്റ്റംബര്‍ 2014

ഉള്ളടക്കം

ഇലക്‌ട്രോണികം

Electronics

സക്രിയ/നിഷ്‌ക്രിയ ഉപകരണങ്ങള്‍ ഉള്‍പ്പെടുത്തി തയ്യാറാക്കുന്ന വിദ്യുത്‌പരിപഥങ്ങളുടെ രൂപകല്‌പനയെയും പ്രയുക്ത വൈദ്യുത കാന്തികബലങ്ങളുടെ സ്വാധീനത്താല്‍ ഇലക്‌ട്രോണുകള്‍ക്കുണ്ടാകുന്ന ചലനത്തെയും പറ്റി പ്രതിപാദിക്കുന്ന ശാസ്‌ത്രസാങ്കേതികശാഖ. ഇലക്‌ട്രോണ്‍, മെക്കാനിക്‌സ്‌ എന്നീ പദങ്ങളില്‍നിന്നാണ്‌ ഇലക്‌ട്രോണിക്‌സ്‌ എന്ന പദം ഉണ്ടായത്‌. ഇന്‍സ്റ്റിറ്റ്യൂഷന്‍ ഒഫ്‌ റേഡിയോ എന്‍ജിനീയേഴ്‌സിന്റെ നിര്‍വചനമനുസരിച്ച്‌ ഇലക്‌ട്രോണികോപകരണങ്ങളെയും അവയുടെ പ്രയോഗങ്ങളെയും കുറിച്ചുള്ള ശാസ്‌ത്രത്തിനും സാങ്കേതികവിദ്യയ്‌ക്കും പൊതുവെയുള്ള പേരാണ്‌ ഇലക്‌ട്രോണികം. നിര്‍വാതാവസ്ഥ (vacuum), താഴ്‌ന്ന മര്‍ദത്തിലുള്ള വാതകം, അര്‍ധചാലകങ്ങള്‍ എന്നിവയില്‍ക്കൂടിയുള്ള ഇലക്‌ട്രോണ്‍പ്രവാഹത്തെ നിയന്ത്രിക്കുന്ന ഉപകരണമാണ്‌ ഇലക്‌ട്രോണികോപകരണം. 19-ാം ശതകത്തില്‍ രൂപംകൊണ്ട ഈ ശാസ്‌ത്രശാഖ ചുരുങ്ങിയ കാലയളവിനുള്ളില്‍ അദ്‌ഭുതകരമായ വേഗത്തില്‍ വളര്‍ന്ന്‌ വികസിച്ച്‌ ഇന്ന്‌ മാനവികജീവിതത്തിന്റെ സമസ്‌തമേഖലകളിലും നിര്‍ണായകമായ സ്വാധീനം ചെലുത്തുന്ന ഒന്നായി മാറിയിരിക്കുന്നു. ഏറെക്കാലം വൈദ്യുത സാങ്കേതികവിദ്യയുടെ ഭാഗമായാണ്‌ ഇതിനെ കരുതിയിരുന്നത്‌. എന്നാല്‍ കഴിഞ്ഞ നൂറ്റാണ്ടിന്റെ അവസാന ദശകങ്ങളിലെ അഭൂതപൂര്‍വമായ വളര്‍ച്ചമൂലം ഇലക്‌ട്രോണികത്തിന്‌ സാങ്കേതികമേഖലയില്‍ തനതായ ഒരു സ്ഥാനം ഉറപ്പിക്കാന്‍ കഴിഞ്ഞു. ആധുനിക വാര്‍ത്താവിനിമയം, ഗതാഗതം, വ്യവസായം, രാജ്യരക്ഷ തുടങ്ങിയ മേഖലകളിലെല്ലാം വിപ്ലവാത്മകമായ പരിവര്‍ത്തനമാണ്‌ ഇലക്‌ട്രോണികം പ്രദാനം ചെയ്‌തത്‌. ആധുനികമനുഷ്യന്റെ സാങ്കേതിക സംസ്‌കാരത്തിന്റെ ഉറവിടവും ജീവനാഡിയും ഇലക്‌ട്രോണികമാണെന്ന്‌ ചുരുക്കിപ്പറയാം. 18-ാം ശതകത്തില്‍ മനുഷ്യന്റെ മാംസപേശികള്‍ക്ക്‌ വിമോചനം നല്‌കാന്‍ ആവിയന്ത്രത്തിന്‌ കഴിഞ്ഞെങ്കില്‍ (വ്യാവസായിക വിപ്ലവം), ആധുനിക ഇലക്‌ട്രോണിക യുഗത്തില്‍ കംപ്യൂട്ടര്‍ മസ്‌തിഷ്‌കവും റോബോട്ടുകളും മറ്റൊരു വ്യാവസായിക വിപ്ലവത്തിന്‌ തുടക്കമിട്ടുകഴിഞ്ഞു.

അടിസ്ഥാനതത്ത്വങ്ങളും സംവിധാനവും

പദാര്‍ഥങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെ ചലനമാണ്‌ ഇലക്‌ട്രോണികത്തിന്റെ അടിസ്ഥാനം. വൈദ്യുത/കാന്തികബലങ്ങള്‍ പ്രയോഗിക്കുക വഴി ഇലക്‌ട്രോണുകളുടെ ചലനത്തെ പ്രയോജനകരമായ രീതിയിലേക്ക്‌ മാറ്റുകയാണ്‌ ഇലക്‌ട്രോണിക ഉപകരണങ്ങള്‍ ചെയ്യുന്നത്‌. ബാറ്ററിപോലുള്ള വൈദ്യുത സ്രാതസ്സുകളില്‍ സൃഷ്‌ടിക്കപ്പെടുന്ന വൈദ്യുതമര്‍ദത്തെ വോള്‍ട്ടത (voltage) എന്നുവിളിക്കുന്നു. ഇലക്‌ട്രോണുകളുടെ പ്രവാഹത്തെയാണ്‌ വൈദ്യുതധാര (current)എന്നു വിളിക്കുന്നത്‌. ഒരു സെക്കന്‍ഡില്‍ പ്രവഹിക്കുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചമാണ്‌ വൈദ്യുതിയുടെ തീവ്രത നിശ്ചയിക്കുന്നത്‌.

വൈദ്യുതി കടത്തിവിടാനുള്ള കഴിവിനെ അടിസ്ഥാനമാക്കി പദാര്‍ഥങ്ങളെ ചാലകങ്ങള്‍, അര്‍ധചാലകങ്ങള്‍, അചാലകങ്ങള്‍ എന്നിങ്ങനെ തരംതിരിച്ചിരിക്കുന്നു. വൈദ്യുതിയെ കടത്തിവിടുന്നവയാണ്‌ ചാലകങ്ങള്‍. അചാലകങ്ങള്‍ വൈദ്യുതിപ്രവാഹത്തെ തടയുന്നവയാണ്‌. എന്നാല്‍ വൈദ്യുതിയെ ഭാഗികമായി കടത്തിവിടുന്നവയാണ്‌ അര്‍ധചാലക പദാര്‍ഥങ്ങള്‍. ഇലക്‌ട്രോണുകളുടെ ചലനത്തെപ്പറ്റി കൂടുതല്‍ മനസ്സിലാക്കണമെങ്കില്‍ മൂലകങ്ങളിലെ അണുഘടനയെപ്പറ്റി അറിഞ്ഞിരിക്കണം.

ഇലക്‌ട്രോണിക സംവിധാനം മൂലകങ്ങളില്‍

ദ്രവ്യത്തിന്റെ ഏറ്റവും ചെറിയ ഘടകമായ അണുവില്‍ ധനചാര്‍ജുള്ള അണുകേന്ദ്രത്തിന്‌ (nucleus) ചുറ്റും ഋണചാര്‍ജുള്ള ഇലക്‌ട്രോണുകള്‍ സഞ്ചരിക്കുന്നു. ക്വാണ്ടം നിയമങ്ങള്‍ക്കു വിധേയമായി ഇലക്‌ട്രോണുകള്‍ K, L, M, N എന്നിങ്ങനെ വിവിധ ഊര്‍ജകക്ഷ്യകളിലാണ്‌ സ്ഥിതിചെയ്യുന്നത്‌. ഓരോ കക്ഷ്യയോടും അനുബന്ധിച്ച്‌ s, p, d, f എന്നിങ്ങനെ ഉപകക്ഷ്യകളും ഉണ്ട്‌. ഏറ്റവും കുറഞ്ഞ ഊര്‍ജം K കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആയിരിക്കും. ഇതിനെ തറനില (ground state) എന്നു വിളിക്കും. L, M, N കക്ഷ്യകളില്‍ ഊര്‍ജനില ക്രമപ്രവൃദ്ധമായി കൂടിവരുന്നു. ന്യൂക്ലിയസിന്‌ ഏറ്റവും അടുത്തുള്ള ഒന്നാമത്തെ കക്ഷ്യയില്‍നിന്നും പുറത്തേക്കുള്ള കക്ഷ്യകളിലേക്ക്‌ ഏതു മൂലകത്തിലായാലും 2, 8, 18, 32 ... എന്ന രീതിയിലായിരിക്കും ഇലക്‌ട്രോണ്‍ വിന്യാസം. ഏറ്റവും അവസാനത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഒരിക്കലും 8-ല്‍ കൂടാന്‍ പാടില്ല. ഇങ്ങനെ അവസാന കക്ഷ്യയില്‍ 8 ഇലക്‌ട്രോണുകള്‍ കൃത്യമായി വരുന്ന മൂലകങ്ങള്‍ വളരെ സ്ഥിരതയുള്ളതായിരിക്കും. ഇങ്ങനെയുള്ള മൂലകങ്ങള്‍ മറ്റു മൂലകങ്ങളുമായി രാസപ്രവര്‍ത്തനത്തിലേര്‍പ്പെടാറില്ല. അവസാന കക്ഷ്യയില്‍ 8 ഇലക്‌ട്രോണില്‍ കുറവാണെങ്കില്‍ ഇവയെ എളുപ്പം ആറ്റത്തില്‍നിന്നു സ്വതന്ത്രമാക്കാം. എന്നാല്‍ അകത്തെ കക്ഷ്യകളില്‍ താങ്ങാവുന്നത്ര ഇലക്‌ട്രോണുകള്‍ ഉണ്ടെങ്കില്‍ ധനചാര്‍ജുള്ള ന്യൂക്ലിയസ്സുമായി അവ കൂടുതല്‍ ആകര്‍ഷിക്കപ്പെടുകയും തത്‌ഫലമായി അവയെ സ്വതന്ത്രമാക്കാന്‍ സാധ്യമല്ലാതെയും വരുന്നു. ഇത്തരം ഇലക്‌ട്രോണുകളെ ബൗണ്ട്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. സ്വതന്ത്രമാക്കുവാന്‍ വളരെ എളുപ്പമുള്ള പുറത്തെ കക്ഷ്യയിലെ ഇലക്‌ട്രോണുകളെ വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ എന്നു പറയുന്നു. വാലന്‍സ്‌ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ആവശ്യത്തിനുള്ള ഊര്‍ജം നല്‍കിയാല്‍ അവയെ സ്വതന്ത്രമാക്കുവാന്‍ സാധിക്കുന്നു. ഇങ്ങനെ സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ (സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍) എന്നു പറയുന്നു. ഇലക്‌ട്രോണിക പഠനത്തില്‍ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ പ്രധാന പങ്കുവഹിക്കുന്നു. സാധാരണ അവസ്ഥയില്‍ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ താരതമ്യേന കൂടുതലുള്ള മൂലകങ്ങളെ സുചാലകങ്ങള്‍ എന്നും കുറവായവയെ കുചാലകങ്ങള്‍ എന്നും പറയുന്നു. സുചാലകങ്ങളിലും കുചാലകങ്ങളിലും കാണുന്ന ഫ്രീ ഇലക്‌ട്രോണുകള്‍ക്കിടയില്‍ ഫ്രീ ഇലക്‌ട്രോണുകളുള്ള മൂലകങ്ങളെ അര്‍ധചാലകങ്ങള്‍ എന്നുപറയുന്നു. നോ. ക്വാണ്ടം സിദ്ധാന്തം

ക്രിസ്റ്റലീകൃത ഘടനയും ഊര്‍ജനിലയും

ഒട്ടുമിക്ക ലോഹങ്ങളും അര്‍ധചാലകങ്ങളും ക്രിസ്റ്റലീകൃത ഘടനയോട്‌ കൂടിയതാണെന്ന്‌ എക്‌സ്‌-റേ പഠനങ്ങള്‍ സ്ഥിരീകരിച്ചിട്ടുണ്ട്‌. ക്രിസ്റ്റലീയഘടനയില്‍ അണുവിലെ അന്തര്‍കക്ഷ്യകളിലെ ഇലക്‌ട്രോണ്‍ ഊര്‍ജത്തിന്‌ വലിയ മാറ്റമുണ്ടാകുന്നില്ല. എന്നാല്‍ ബാഹ്യകക്ഷ്യകളിലെ ഇലക്‌ട്രോണുകളുടെ മേല്‍ സമീപാണുക്കളുടെ സ്വാധീനം ശക്തമായതിനാല്‍ ഊര്‍ജമാറ്റമുണ്ടാകുന്നു. ബാഹ്യഇലക്‌ട്രോണുകളുടെ പുതിയ ഊര്‍ജനില ക്വാണ്ടം ബലതന്ത്രം ഉപയോഗിച്ചാണ്‌ വിശദീകരിക്കപ്പെട്ടിട്ടുള്ളത്‌. വിവിധ കക്ഷ്യകളിലുള്ള ഇലക്‌ട്രോണുകളുടെ ഊര്‍ജനില സ്വതന്ത്ര അണുവില്‍ നിശ്ചിത അകലത്തിലാണ്‌ ക്രമീകരിക്കപ്പെട്ടിട്ടുള്ളതെങ്കില്‍ ക്രിസ്റ്റലീകൃത ഘടനയില്‍ ഈ ഊര്‍ജനിലകള്‍ പരസ്‌പരം ഇഴുകിച്ചേര്‍ന്നിരിക്കുന്നു.

ഇലക്‌ട്രോണിക ഉത്സര്‍ജനം

ഒരു ലോഹത്തിന്റെ ഉപരിതലത്തില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ സ്വതന്ത്രമാക്കപ്പെടുന്ന പ്രക്രിയയാണ്‌ ഇലക്‌ട്രോണിക ഉത്സര്‍ജനം. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഏതെങ്കിലും രീതിയിലുള്ള ഊര്‍ജം നല്‍കുന്നതിന്റെ ഫലമായി അവ ലോഹങ്ങളുടെ അറ്റോമികബലത്തില്‍നിന്ന്‌ പൂര്‍ണമായും സ്വതന്ത്രമാക്കപ്പെടുന്നു. നിശ്ചിത ഓര്‍ബിറ്റലിലൂടെയുള്ള ചലനം നിമിത്തം ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭ്യമാകുന്ന ഗതികോര്‍ജത്തിന്റെ അപര്യാപ്‌തതമൂലമാണ്‌ ഇപ്രകാരം പുറമേനിന്നും ഊര്‍ജം നല്‌കേണ്ടിവരുന്നത്‌. ഇങ്ങനെ ലോഹോപരിതലത്തില്‍നിന്ന്‌ സ്വതന്ത്രമാകാന്‍ ഇലക്‌ട്രോണിന്‌ ആകെ വേണ്ട ഊര്‍ജത്തെ ബാരിയര്‍ ഊര്‍ജം (EB) എന്നു പറയുന്നു. ഒരു ഇലക്‌ട്രോണിനെ ലോഹോപരിതലത്തില്‍നിന്നു സ്വതന്ത്രമാക്കുവാന്‍ വേണ്ടി പുറമേനിന്ന്‌ നല്‌കുന്ന ഏറ്റവും കുറഞ്ഞ ഊര്‍ജത്തെ വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ (EW) എന്നു പറയുന്നു. ശുദ്ധലോഹങ്ങളില്‍ ഇതിന്റെ മൂല്യം ഏകദേശം 2 ല്‌ മുതല്‍ 6 ല്‌ വരെയാകാം. വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ ലോഹത്തിന്റെ സ്വഭാവം, ശുദ്ധത (purity) മുതലായവയെ ആശ്രയിച്ചിരിക്കുന്നു. ലോഹത്തെ ചൂടാക്കി ഉയര്‍ന്ന താപനിലയിലെത്തിക്കുന്നതുവഴിയും ഇലക്‌ട്രോണികനിര്‍ഗമനം സാധ്യമാണ്‌ (തെര്‍മിയോണിക്‌ നിര്‍ഗമനം). നിഷ്‌ക്രിയ വാതകങ്ങള്‍ നിറച്ച ട്യൂബിനുള്ളിലോ നിര്‍വാതാവസ്ഥയിലോ വച്ചു വേണം ഇവയെ ചൂടാക്കേണ്ടത്‌. വൈദ്യുത പ്രവാഹത്തിലൂടെ ആവശ്യമായ താപം നല്‌കാവുന്നതാണ്‌. ഒ.ഡബ്ല്യു. റിച്ചാര്‍ഡ്‌സണ്‍ ആവിഷ്‌കരിച്ച റിച്ചാര്‍ഡ്‌സണ്‍ ഡാഷ്‌മാന്‍ സമീകരണത്തിലൂടെ നിര്‍ഗമന വൈദ്യുതപ്രവാഹത്തിന്റെ പരിമാണം (ആമ്പിയര്‍/ചതുരശ്രമീറ്റര്‍) നിര്‍ണയിക്കാം.

IS = AT2be/k

A റിച്ചാര്‍ഡ്‌സണ്‍ സ്ഥിരാങ്കം (ആമ്പിയര്‍/ചതുരശ്രമീറ്റര്‍/ ചതുരശ്രഡിഗ്രി)

T കേവല താപനില (കെല്‍വിന്‍)

b നിര്‍ഗമനോപരിതലവും ചുറ്റുപാടും തമ്മിലുള്ള ബന്ധം നിര്‍ണയിക്കുന്ന വര്‍ക്ക്‌ ഫങ്‌ഷന്‍ സ്ഥിരാങ്കം (കെല്‍വിന്‍)

e – 2.71828 (സ്വാഭാവിക ലോഗരിത ആധാരം)

k ബോട്‌സ്‌മാന്‍ സ്ഥിരാങ്കം

പ്രധാനമായും നാല്‌ വിധത്തിലുള്ള ഉത്സര്‍ജനം മുഖേനയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകള്‍ ആറ്റത്തില്‍നിന്നു സ്വതന്ത്രമാക്കപ്പെടുന്നത്‌.

(i) തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനം, (ii) ഫീല്‍ഡ്‌ ഉത്സര്‍ജനം, (iii) ഫൊട്ടോഇലക്‌ട്രിക്‌ ഉത്സര്‍ജനം, (iv) സെക്കന്‍ഡറി ഉത്സര്‍ജനം.

i. തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനം. താപോര്‍ജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനമാണിത്‌. ഈ രീതിയനുസരിച്ച്‌, ലോഹത്തെ ഒരു നിര്‍ദിഷ്‌ട അളവില്‍ ചൂടാക്കിയാണ്‌ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ ഊര്‍ജം വര്‍ധിപ്പിക്കുന്നത്‌. അവശ്യംവേണ്ട ഊര്‍ജം സംഭരിച്ചശേഷം ഫ്രീ ഇലക്‌ട്രോണുകള്‍ അറ്റോമിക ബന്ധനം ഭേദിച്ച്‌ ലോഹോപരിതലത്തില്‍നിന്നു പുറത്തുവരുന്നു. ഇങ്ങനെ പുറത്തുവരുന്ന ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചം ഊഷ്‌മാവിനെ ആശ്രയിച്ചിരിക്കുന്നു. ഊഷ്‌മാവ്‌ കൂടുതലാണെങ്കില്‍ ഫ്രീ ഇലക്‌ട്രോണുകളുടെ എച്ചവും കൂടുതലായിരിക്കും. തെര്‍മിയോണിക്‌ ഉത്സര്‍ജനത്തെ പ്രമറി ഉത്സര്‍ജനം എന്നുംപറയാറുണ്ട്‌. വാക്വം ട്യൂബുകളില്‍ ഇത്തരത്തിലുള്ള ഉത്സര്‍ജനമാണ്‌ നടക്കുന്നത്‌.

ii. ഫീല്‍ഡ്‌ ഉത്സര്‍ജനം. ഉന്നത വൈദ്യുതമണ്ഡലം കൊണ്ടുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനമാണിത്‌. ഋണചാര്‍ജുള്ള ഇലക്‌ട്രോണ്‍ കണങ്ങളെ ശക്തിയേറിയ ഒരു വൈദ്യുത മണ്ഡലത്തില്‍ ധനവോള്‍ട്ടത നല്‌കി സ്വതന്ത്രമാക്കുകയാണ്‌ ഇതില്‍. വൈദ്യുതമണ്ഡലത്തിന്റെ തീവ്രതയ്‌ക്കനുസരിച്ച്‌ സ്വതന്ത്രമാക്കപ്പെടുന്ന ഇലക്‌ട്രോണുകളുടെ എച്ചം വ്യത്യാസപ്പെടുന്നു. തീവ്രത കൂടുതലാണെങ്കില്‍ ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനവും കൂടുതലായിരിക്കും.

iii. ഫോട്ടോഇലക്‌ട്രിക്‌ ഉത്സര്‍ജനം. പ്രകാശോര്‍ജം മുഖേനയുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനം. പ്രകാശത്തില്‍നിന്നുള്ള ഊര്‍ജം ലോഹപ്രതലത്തിലൂടെ ഇലക്‌ട്രോണുകളില്‍ വ്യാപിക്കപ്പെടുന്നതിനാല്‍ അവ സ്വതന്ത്രമാക്കപ്പെടുന്നു. പ്രകാശത്തിന്റെ തീവ്രത കൂടുന്നതിനനുസരിച്ച്‌ ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനവും കൂടുന്നു.

iv. സെക്കന്‍ഡറി ഉത്സര്‍ജനം. മറ്റു കണങ്ങള്‍ ഉപയോഗിച്ചുള്ള ഇലക്‌ട്രോണ്‍ ഉത്സര്‍ജനം നടത്തുന്ന രീതിയാണിത്‌. ഇലക്‌ട്രോണ്‍, ധന അയോണ്‍ എന്നിവ ഒരു ലോഹപ്രതലത്തില്‍ വളരെ ശക്തിയോടെ പതിക്കുമ്പോള്‍ നിപതിക്കുന്ന കണങ്ങളുടെ ഗതികോര്‍ജം ലോഹോപരിതലത്തിലെ ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ലഭിക്കുന്നു. ഈ ഊര്‍ജവും അവയുടെ സാധാരണ ഊര്‍ജവും ചേര്‍ന്ന്‌ അറ്റോമികബന്ധനം ഭേദിച്ച്‌ അവ പുറത്തുകടക്കുന്നു. ചെന്നിടിക്കുന്ന ഇലക്‌ട്രോണുകളെ പ്രമറി ഇലക്‌ട്രോണുകള്‍ എന്നും ലോഹോപരിതലത്തില്‍നിന്നു സ്വതന്ത്രമാകുന്ന ഇലക്‌ട്രോണുകളെ സെക്കന്‍ഡറി ഇലക്‌ട്രോണുകള്‍ എന്നും പറയുന്നു.

ഇലക്‌ട്രോണ്‍ പ്രവാഹം അര്‍ധചാലകങ്ങളില്‍

ഋണാത്മകചാര്‍ജുള്ള ഇലക്‌ട്രോണുകളുടെ പ്രവാഹമാണ്‌ ലോഹങ്ങളിലെ വൈദ്യുതിക്കാധാരമെങ്കില്‍ ഋണാത്മകവും ധനാത്മകവുമായ ചാര്‍ജുകളുടെ പ്രവാഹമാണ്‌ അര്‍ധചാലകങ്ങളില്‍ വിദ്യുദ്‌ധാരയെ നിയന്ത്രിക്കുന്നത്‌. അര്‍ധചാലകങ്ങളല്ലാത്ത മറ്റ്‌ മൂലകാണുക്കള്‍ അര്‍ധചാലകങ്ങളോട്‌ കൂട്ടിച്ചേര്‍ത്ത്‌ ഇലക്‌ട്രോണുകളുടെയോ സുഷിര(holes)ങ്ങളുടെയോ സ്വാധീനത്താല്‍ വൈദ്യുത പ്രവാഹം അര്‍ധചാലകങ്ങളില്‍ സാധ്യമാക്കാവുന്നതാണ്‌. (സഹസംയോജനബന്ധനത്തിലുള്ള ഇലക്‌ട്രോണ്‍ സ്വതന്ത്രമാകുമ്പോള്‍ ഉണ്ടാകുന്ന ഋണചാര്‍ജിന്റെ അഭാവത്തെയാണ്‌ സുഷിരം എന്നുപറയുന്നത്‌. ഇത്‌ ഒരു ധനചാര്‍ജ്‌ പോലെ വര്‍ത്തിക്കുന്നു.) ഈ പ്രക്രിയയെയാണ്‌ "ഡോപിങ്‌' (doping) എന്നു വിളിക്കുന്നത്‌. അര്‍ധചാലകങ്ങളിലെ സഹസംയോജക ബന്ധന(covalent bonds)ത്തില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ വേര്‍പെടുമ്പോള്‍ അവ ക്രിസ്റ്റലീകൃത ഘടനയ്‌ക്കുള്ളിലൂടെ അലക്ഷ്യമായി സഞ്ചരിക്കുന്നു. ഒരു ബാഹ്യ വിദ്യുത്‌മണ്ഡലം ഈ ശുദ്ധഅര്‍ധചാലകങ്ങളില്‍ (intrinsic semiconductors) പ്രയോഗിക്കുമ്പോള്‍ സ്വതന്ത്ര ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും സഹായത്തോടെ വിദ്യുത്‌പ്രവാഹം സാധ്യമാകുന്നു. സ്വതന്ത്ര ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ ധനാഗ്രത്തിലേക്കും (positive terminal) സുഷിരങ്ങള്‍ ഋണാഗ്രത്തിലേക്കും (negative terminal) നീങ്ങുന്നു. വിരുദ്ധ ദിശകളിലാണ്‌ ഇവയുടെ ചലനം. ഋണാഗ്രത്തില്‍ സുഷിരങ്ങള്‍ എത്തുമ്പോള്‍ അവിടെയുള്ള ഇലക്‌ട്രോണുകളുമായിച്ചേര്‍ന്ന്‌ സുഷിരങ്ങള്‍ നിഷ്‌ക്രിയമാക്കപ്പെടുന്നു. അതേ സമയം ബാറ്ററിയുടെ ധനാഗ്രത്തിന്‌ സമീപമുള്ള ഇലക്‌ട്രോണുകള്‍ ധനാഗ്രത്തിലേക്ക്‌ ആകര്‍ഷിക്കപ്പെടുന്നു. ഇലക്‌ട്രോണുകള്‍ സ്ഥാനചലനംമൂലം അപ്പോള്‍ രൂപീകൃതമാകുന്ന സുഷിരങ്ങള്‍ വീണ്ടും പഴയ ദിശയില്‍ ഋണാഗ്രത്തിലേക്ക്‌ നീങ്ങുന്നു. സാമ്പ്രദായിക വൈദ്യുത പ്രവാഹദിശ (conventional current) ഇലക്‌ട്രോണ്‍ സഞ്ചാരത്തിന്‌ വിപരീത ദിശയിലായിരിക്കും.

ഡോപിങ്ങിന്‌ വിധേയമായ അര്‍ധചാലകങ്ങള്‍ ദാതാവ്‌ (donor), സ്വീകര്‍ത്താവ്‌ (receiver) എന്നിങ്ങനെ രണ്ടുവിധത്തിലുണ്ട്‌. ഇവയെ യഥാക്രമം N-തരം (N-type), P-തരം (P-type) എന്നും വിളിക്കാം. Pടൈപ്പ്‌ അര്‍ധചാലകത്തിന്റെയും Nടൈപ്പ്‌ അര്‍ധചാലകത്തിന്റെയും സന്ധി ഒരു ദിശയിലേക്കുമാത്രമേ കാര്യമായി വൈദ്യുതി പ്രവഹിപ്പിക്കുകയുള്ളൂ. ഈ ഉപാധിയെ ഒരു PN ജങ്‌ഷന്‍ ഡയോഡ്‌ എന്നു പറയുന്നു. സംയോജകതാമൂല്യം അഞ്ച്‌ ആയ ആഴ്‌സനിക്‌, ആന്റിമണി, ബിസ്‌മത്ത്‌, ഫോസ്‌ഫറസ്‌ തുടങ്ങിയ അന്യവസ്‌തുക്കള്‍ വളരെ ചെറിയ അളവില്‍ (ഒരു ലക്ഷത്തിലൊന്ന്‌ എന്ന കണക്കില്‍) അര്‍ധചാലകങ്ങളോട്‌ ചേര്‍ത്ത്‌ N--തരം ചാലകങ്ങളുണ്ടാക്കാം. സംയോജകതാമൂല്യം മൂന്ന്‌ ആയ ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം, അലുമിനിയം തുടങ്ങിയ അന്യവസ്‌തുക്കളാണ്‌ P-തരം അര്‍ധചാലകങ്ങളുടെ നിര്‍മാണത്തിന്‌ ഉപയോഗിക്കുന്നത്‌. ആധുനിക ഇലക്‌ട്രോണിക പരിപഥങ്ങളില്‍ അര്‍ധചാലകോപാധികള്‍ ധാരാളമായി ഉപയോഗപ്പെടുത്തി വരുന്നു. അത്യധികം ഉയര്‍ന്ന ശക്തിനില കൈകാര്യം ചെയ്യുന്ന പരിപഥങ്ങളിലൊഴികെ മറ്റെല്ലായിടങ്ങളിലും അര്‍ധചാലകഡയോഡുകളും ട്രോന്‍സിസ്റ്ററുകളും സൗകര്യം പോലെ ഉപയോഗിച്ച്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങള്‍ രൂപകല്‌പന ചെയ്യാവുന്നതാണ്‌. അര്‍ധചാലക വസ്‌തുക്കളുടെ പ്രത്യേക വൈദ്യുത ഗുണങ്ങളാണ്‌ ഖരാവസ്ഥാ-ഇലക്‌ട്രോണികത്തിന്‌ ആധാരമായി വര്‍ത്തിക്കുന്നത്‌.

അടിസ്ഥാന ഘടകങ്ങള്‍

ഏതൊരു ഇലക്‌ട്രോണിക പരിപഥത്തിനും ചില അടിസ്ഥാന ഘടകങ്ങളുണ്ട്‌. അവയെ പൊതുവേ ക്രിയാത്മകം (active), നിഷ്‌ക്രിയം (passive) എന്നിങ്ങനെ രണ്ടായി തിരിക്കാം.

ഒരു വൈദ്യുത സിഗ്നലിനെ പ്രവര്‍ധിപ്പിക്കാനോ കൈകാര്യം ചെയ്യാനോ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ മാത്രമേ കഴിയൂ. നിഷ്‌ക്രിയ ഘടകങ്ങള്‍ക്ക്‌ ഈ കഴിവുകളില്ല. എന്നാല്‍ നിഷ്‌ക്രിയ ഘടകങ്ങളുടെ സഹായത്തോടെ മാത്രമേ ക്രിയാത്മക ഘടകങ്ങള്‍ക്ക്‌ പ്രവര്‍ത്തിക്കാനാവൂ.

നിഷ്‌ക്രിയ ഘടകങ്ങള്‍

രോധകം, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍ എന്നിവയാണ്‌ ഇലക്‌ട്രോണിക പരിപഥങ്ങളില്‍ ഉപയോഗിക്കുന്ന നിഷ്‌ക്രിയ ഘടകങ്ങള്‍.

രോധകം (റെസിസ്റ്റര്‍)

വൈദ്യുതിയുടെ ഒഴുക്കിന്‌ തടസ്സമുണ്ടാക്കാന്‍ കഴിവുള്ള ഉപകരണമാണ്‌ രോധകങ്ങള്‍ അഥവാ റെസിസ്റ്ററുകള്‍. വൈദ്യുത പ്രവാഹത്തിന്റെയും വോള്‍ട്ടതയുടെയും അളവിനു വ്യത്യാസമുണ്ടാക്കാന്‍ ഇവ പ്രയോജനപ്പെടുത്തുന്നു. സാധാരണയായി കാര്‍ബണ്‍ ഫിലിം, ക്രാമിയം, നിക്കല്‍ എന്നീ പദാര്‍ഥങ്ങള്‍ കൊണ്ടാണിവ നിര്‍മിക്കുന്നത്‌. "ഓം' (Ohm) എന്ന ഏകകമാണ്‌ രോധത്തെ അളക്കാന്‍ ഉപയോഗിക്കുന്നത്‌. രോധത്തിന്റെ മുകളില്‍ വരച്ചിട്ടുള്ള വിവിധ നിറങ്ങളില്‍ നിന്നാണ്‌ രോധം രേഖപ്പെടുത്തുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം

കപ്പാസിറ്റര്‍

വൈദ്യുത പരിപഥങ്ങളില്‍ ചാര്‍ജ്‌ ശേഖരിച്ചുവയ്‌ക്കാന്‍ ഉപയോഗിക്കുന്ന ഉപകരണമാണ്‌ കപ്പാസിറ്ററുകള്‍. രണ്ട്‌ ലോഹ പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്ക്‌ ഇന്‍സുലേറ്ററുകളായ പേപ്പര്‍, മൈക്ക, സെറാമിക്‌ തുടങ്ങിയവ ഉപയോഗിച്ചാണ്‌ സാധാരണ കപ്പാസിറ്റര്‍ നിര്‍മിക്കുന്നത്‌. പ്ലേറ്റുകള്‍ക്കിടയ്‌ക്കുള്ള ഇന്‍സുലേറ്ററിനെ ഡൈഇലക്‌ട്രിക്‌ എന്നുപറയുന്നു. വൈദ്യുതചാര്‍ജ്‌ ശേഖരിക്കാനുള്ള കപ്പാസിറ്ററിന്റെ കഴിവിനെ കപ്പാസിറ്റന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഫാരഡ്‌ എന്ന ഏകകമാണ്‌ ഇതളക്കാനുപയോഗിക്കുന്നത്‌. കപ്പാസിറ്റന്‍സ്‌ സാധാരണ കപ്പാസിറ്ററുകള്‍ക്ക്‌ മുകളില്‍ രേഖപ്പെടുത്തിയിട്ടുണ്ടാകും. കളര്‍കോഡ്‌ രീതിയിലും ഇത്‌ രേഖപ്പെടുത്താറുണ്ട്‌. പൊതുവായുള്ള ചിഹ്നം

ഇന്‍ഡക്‌ടര്‍

വൈദ്യുത പ്രവാഹ തീവ്രതയിലുണ്ടാകുന്ന മാറ്റങ്ങളെ ചെറുക്കാന്‍ കഴിവുള്ള ഉപകരണങ്ങളാണ്‌ ഇന്‍ഡക്‌ടറുകള്‍. വൈദ്യുതധാര കടന്നുപോകുമ്പോള്‍ ഉണ്ടാകുന്ന ഒരു കാന്തിക മണ്ഡലത്തില്‍ ഊര്‍ജം സൂക്ഷിക്കുകയാണിവ ചെയ്യുന്നത്‌. വൈദ്യുത ഏറ്റക്കുറച്ചിലുകള്‍ ചെറുക്കാനുള്ള ഇന്‍ഡക്‌ടറിന്റെ കഴിവിനെ ഇന്‍ഡക്‌ടന്‍സ്‌ എന്നുവിളിക്കുന്നു. ഹെന്‌റി എന്ന ഏകകത്തിലാണ്‌ ഇന്‍ഡക്‌ടന്‍സ്‌ അളക്കുന്നത്‌. പൊതുവായുള്ള ചിഹ്നം

ക്രിയാത്മക ഘടകങ്ങള്‍

ട്യൂബ്‌തരം, അര്‍ധചാലകതരം എന്നിങ്ങനെ ക്രിയാത്മകഘടകങ്ങളെ രണ്ടായി തിരിക്കാം.

ട്യൂബ്‌തരം

വാക്വം ഡയോഡ്‌

ചൂടാക്കിയ ഒരു ഇലക്‌ട്രോഡില്‍നിന്നും ഇലക്‌ട്രോണുകള്‍ ഉത്സര്‍ജിക്കുന്നതാണ്‌ ട്യൂബ്‌ ഉപകരണങ്ങളുടെ പ്രവര്‍ത്തനത്തിന്റെ അടിസ്ഥാനം. ഋണചാര്‍ജുള്ള കാഥോഡില്‍നിന്നും ഉത്സര്‍ജിക്കുന്ന ഇലക്‌ട്രോണുകള്‍ ധനചാര്‍ജുള്ള ആനോഡില്‍ എത്തിച്ചേരുന്നു. ആനോഡിനും കാഥോഡിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോഡുകള്‍ സജ്ജീകരിച്ച്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തെ നിയന്ത്രിക്കുകയും വിവിധ പ്രവൃത്തികള്‍ക്ക്‌ പ്രയോജനപ്പെടുത്തുകയും ചെയ്യുന്നു.

ട്യൂബുകളെന്നും വാതക ട്യൂബുകളെന്നും ട്യൂബ്‌ ഉപകരണങ്ങളെ വീണ്ടും രണ്ടായി തിരിക്കാം. വാക്വം ട്യൂബുകളില്‍ കാഥോഡിനും ആനോഡിനും ഇടയ്‌ക്കുള്ള സ്ഥലം നിര്‍വാതമായിരിക്കും. വാക്വം ഡയോഡ്‌, വാക്വം ട്രയോഡ്‌, വാക്വം ടെട്രോഡ്‌, വാക്വം പെന്റോഡ്‌ തുടങ്ങിയവ വാക്വം ട്യൂബുകള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌. വാതക (gas diode), തൈറാട്രോണ്‍ എന്നിവ വിവിധതരം വാതക ട്യൂബുകളാണ്‌. വാതക ട്യൂബുകളില്‍ ഏതെങ്കിലുമൊരു വാതകം നിറച്ചിരിക്കും.

ആദ്യകാലങ്ങളില്‍ ട്യൂബ്‌തരം ഉപകരണങ്ങളായിരുന്നു വ്യാപകമായി ഉപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ചെറുതും കൂടുതല്‍ കാര്യക്ഷമവുമായ അര്‍ധചാലക ഉപകരണങ്ങള്‍ ആവിര്‍ഭവിച്ചതോടെ ട്യൂബ്‌ ഉപകരണങ്ങള്‍ ഏറെക്കുറെ അപ്രത്യക്ഷമായി എന്നു പറയാം.

അര്‍ധചാലകതരം

അര്‍ധചാലകങ്ങളായ സിലിക്കണ്‍, ജര്‍മേനിയം എന്നിവ കൊണ്ട്‌ നിര്‍മിക്കുന്ന ഇലക്‌ട്രോണിക ഘടകങ്ങളാണ്‌ ഈ വിഭാഗത്തില്‍പ്പെടുന്നത്‌. ജങ്‌ഷന്‍ ഡയോഡ്‌, ബി.ജെ.റ്റി., യു.ജെ.റ്റി, എസ്‌.സി.ആര്‍, ടണല്‍ ഡയോഡ്‌ (Tunnel diode), സെനര്‍ ഡയോഡ്‌ (Zener diode), ട്രോന്‍സിസ്റ്ററുകള്‍ എന്നിവ അര്‍ധചാലക ഘടകങ്ങള്‍ക്ക്‌ ഉദാഹരണങ്ങളാണ്‌.

ഡയോഡ്‌

അര്‍ധചാലകങ്ങളായ സിലിക്കണ്‍/ജര്‍മേനിയം ക്രിസ്റ്റലുകളുപയോഗിച്ചാണ്‌ ക്രിയാത്മക ഘടകങ്ങളായ ഡയോഡുകള്‍ നിര്‍മിക്കുന്നത്‌. ഇവ ഒരു ദിശയില്‍ മാത്രം വൈദ്യുതി കടത്തിവിടുന്നവയാണ്‌. ഒരു അര്‍ധചാലകത്തിന്റെ ഒരു വശത്ത്‌ ദാതാവ്‌ ആറ്റം കൊണ്ടും മറുവശത്ത്‌ സ്വീകര്‍ത്താവ്‌ ആറ്റം കൊണ്ടും ഡോപ്‌ ചെയ്‌താണ്‌ ഡയോഡ്‌ നിര്‍മിക്കുന്നത്‌. ഈ രണ്ടുതരം ഭാഗങ്ങള്‍ ചേര്‍ന്നതായിരിക്കും ഒരു ഡയോഡ്‌. ഇവയെ ജച സന്ധി ഡയോഡുകള്‍ എന്നു വിളിക്കുന്നു.

ഡയോഡ്‌-പ്രവര്‍ത്തനം

ഒരു ഡയോഡില്‍ക്കൂടി വൈദ്യുതി കടത്തി വിടുന്ന പ്രക്രിയ ബയാസിങ്‌ (biasing) എന്നാണറിയപ്പെടുന്നത്‌. ഫോര്‍വേഡ്‌ ബയാസിങ്‌, റിവേഴ്‌സ്‌ ബയാസിങ്‌ എന്നിങ്ങനെ രണ്ടുതരം ബയാസിങ്‌ രീതികള്‍ നിലവിലുണ്ട്‌.

ഫോര്‍വേഡ്‌ ബയാസിങ്ങില്‍ ഒരു ഡയോഡിന്റെ ജ ഭാഗത്ത്‌ ബാറ്ററിയുടെ +ve ടെര്‍മിനലും ച ഭാഗത്ത്‌ ബാറ്ററിയുടെ-ve ടെര്‍മിനലും ഘടിപ്പിക്കുന്നു. P ഭാഗത്ത്‌ ധന ചാര്‍ജ്‌ കൊടുക്കുമ്പോള്‍ സുഷിരങ്ങള്‍ വികര്‍ഷിക്കപ്പെട്ട്‌ അകന്നു പോകുന്നു. N ഭാഗത്ത്‌ ഇലക്‌ട്രോണുകള്‍ -ve ടെര്‍മിനലില്‍നിന്നും അകന്നുപോകുന്നു. ഇങ്ങനെ മധ്യഭാഗത്തേക്ക്‌ എത്തുന്ന ചാര്‍ജുകളില്‍ ഒരേ ചാര്‍ജുള്ളവ വികര്‍ഷിക്കപ്പെടുകയും വിപരീതചാര്‍ജുകളുള്ളവ ആകര്‍ഷിക്കപ്പെടുകയും ചെയ്യുന്നു. ചാര്‍ജുകളുടെ മര്‍ദംമൂലം P ഭാഗത്തെ ഇലക്‌ട്രോണുകള്‍ തമ്മിലുള്ള ബന്ധം മുറിഞ്ഞ്‌ സ്വതന്ത്രമായ ഇലക്‌ട്രോണുകള്‍ ബാറ്ററിയുടെ +ve ലേക്ക്‌ ഒഴുകുന്നു. ഇങ്ങനെ വൈദ്യുത പ്രവാഹം ഉണ്ടാകുന്നു. PN സന്ധി ഡയോഡിന്റെ P ഭാഗത്ത്‌ ബാറ്ററിയുടെ EW ടെര്‍മിനലും N ഭാഗത്ത്‌ ബാറ്ററിയുടെ LS ടെര്‍മിനലും ഘടിപ്പിക്കുന്നതാണ്‌ റിവേഴ്‌സ്‌ ബയാസിങ്‌ രീതി. ഇങ്ങനെ ഘടിപ്പിക്കുമ്പോള്‍ P ഭാഗത്തെ സുഷിരങ്ങളും N ഭാഗത്തെ ഇലക്‌ട്രോണുകളും സന്ധിയില്‍നിന്നും അകന്നുപോകുന്നു. ഈ രീതിയില്‍ വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നില്ല.

PN സന്ധി ഡയോഡുകള്‍ ഏറ്റവും അധികം ഉപയോഗിക്കുന്നത്‌ റെക്‌ടിഫിക്കേഷനുവേണ്ടിയാണ്‌. പ്രത്യാവര്‍ത്തി ധാരാ വൈദ്യുതിയെ നേര്‍ധാരയാക്കി മാറ്റുന്ന പ്രക്രിയയാണ്‌ റെക്‌ടിഫിക്കേഷന്‍. നോ. ഡയോഡ്‌

ട്രോന്‍സിസ്റ്റര്‍

ജര്‍മേനിയമോ സിലിക്കണോ ഉപയോഗിച്ച്‌ നിര്‍മിക്കുന്ന ട്രോന്‍സിസ്റ്ററുകള്‍ ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ മുഖ്യഘടകമാണ്‌. അടിസ്ഥാനപരമായി ഒരു പ്രവര്‍ധക (Amplifying) ഉപകരണമായ ഇവയെ ദോലനം, സ്വിച്ചിങ്‌, റെക്‌ടിഫിക്കേഷന്‍ തുടങ്ങി നിരവധി ഉപയോഗങ്ങള്‍ക്കും പ്രയോജനപ്പെടുത്തുന്നു. ഒരേ തരം അര്‍ധചാലകവസ്‌തുവിന്റെ രണ്ടു ഭാഗങ്ങളെ മറ്റൊരുതരം അര്‍ധചാലക വസ്‌തുവിന്റെ ഒരു പാളികൊണ്ട്‌ വേര്‍തിരിച്ചാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ രൂപപ്പെടുത്തുന്നത്‌. ഡോപ്‌ ചെയ്‌ത പദാര്‍ഥത്തെ അടിസ്ഥാനമാക്കി ഒരു ട്രോന്‍സിസ്റ്ററില്‍ മൂന്ന്‌ പാളികള്‍ ഉണ്ടായിരിക്കും p,n,p പാളികളോ n,p,n പാളികളോ; ഇതിനനുസൃതങ്ങളായി ഇവയെ pnp ട്രോന്‍സിസ്റ്റര്‍ എന്നോ npn ട്രോന്‍സിസ്റ്റര്‍ എന്നോ വിളിക്കുന്നു. ട്രോന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉത്സര്‍ജകം (emitter) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (collector) എന്നും ഇവയ്‌ക്കിടയിലുള്ള കനംകുറഞ്ഞ പാളിയെ ആധാരം (base) എന്നും സൂചിപ്പിക്കുന്നു. ട്യൂബ്‌ ഉപകരണമായ ട്രയോഡിന്റെ പ്ലേറ്റ്‌, കാഥോഡ്‌, ബേസ്‌ എന്നിവയ്‌ക്ക്‌ സമാനമാണവ. ട്രയോഡ്‌ ഒരു വോള്‍ട്ടതാനിയന്ത്രിത ഉപാധിയാണ്‌; ട്രോന്‍സിസ്റ്റര്‍, ഒരു ധാരാനിയന്ത്രിത ഉപാധിയും. ആധാരത്തില്‍ക്കൂടി പ്രവഹിക്കുന്ന ഒരു ചെറിയ ധാരയ്‌ക്ക്‌ സംഗ്രാഹകധാരയ്‌ക്കുമേല്‍ നിര്‍ണായക സ്വാധീനം ചെലുത്താനാകുമെന്നാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുന്നതിന്റെ അടിസ്ഥാനതത്ത്വം. ട്രോന്‍സിസ്റ്ററുകളെ പരിപഥത്തില്‍ മൂന്നു രീതിയില്‍ ഘടിപ്പിക്കാം. ഉത്സര്‍ജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയില്‍ ഒന്നിനെ നിവേശ പരിപഥത്തിലും മറ്റൊന്നിനെ നിര്‍ഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയില്‍ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ്‌ യഥാക്രമം പൊതുഉത്സര്‍ജകം (Common emitter), പൊതുസംഗ്രാഹകം (Common collector), പൊതുആധാരം (Common base) പരിപഥ തരങ്ങള്‍.

ട്രോന്‍സിസ്റ്റര്‍-പ്രവര്‍ത്തനം

ട്രോന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രണ്ടു രീതിയില്‍ ഘടിപ്പിക്കാം. ഒരു ജങ്‌ഷനിലെ n പാളി ധനാത്മകവും തൊട്ടടുത്ത p പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തില്‍ ബാഹ്യപരിപഥം രൂപപ്പെടുത്തുന്നതാണ്‌ ഒരു രീതി. ഇത്തരം അവസ്ഥയില്‍ n, p പാളികള്‍ക്കിടയില്‍ അനുഭവപ്പെടുന്ന ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാപ്രവാഹം മാത്രമേ ഇത്തരത്തില്‍ ജങ്‌ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉത്‌ക്രമ ബയസ്‌ (reverse bias) എന്നു വിളിക്കുന്നു. ഇതിനുപകരമായി n തലം ഋണാത്മകവും p തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ്‌ ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കില്‍ ജങ്‌ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയര്‍ന്ന തോതിലുള്ള ധാരാപ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയസ്‌ (forward bias) എന്ന്‌ വിളിക്കുന്നു. നോ. ട്രോന്‍സിസ്റ്റര്‍

അടിസ്ഥാന പരിപഥങ്ങള്‍

ഉള്ളിലേക്ക്‌ നല്‍കുന്ന സിഗ്നലുകളെ അവയുടെ തരംഗരൂപത്തിന്‌ മാറ്റം വരുത്താത്ത രീതിയില്‍ വലുതാക്കി പുറത്തുവിടാന്‍ കഴിവുള്ള പരിപഥങ്ങളാണ്‌ ആംപ്ലിഫയറുകള്‍ അഥവാ പ്രവര്‍ധകങ്ങള്‍. ഇവ ടെലിവിഷന്‍, റേഡിയോ, സി.ഡി. പ്ലെയര്‍, കംപ്യൂട്ടര്‍ തുടങ്ങിയ ഉപകരണങ്ങളിലെല്ലാം ഒഴിച്ചുകൂടാന്‍ പറ്റാത്ത ഘടകമാണ്‌. ആദ്യകാലങ്ങളില്‍ വാക്വം ട്രയോഡുകളും വാക്വം പെന്റോഡുകളുമാണ്‌ പ്രവര്‍ധകങ്ങളുടെ നിര്‍മാണത്തിനുപയോഗിച്ചിരുന്നത്‌. പിന്നീട്‌ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചുള്ളവ നിലവില്‍ വന്നു. 1970-കളില്‍ നിലവില്‍ വന്ന ഫീല്‍ഡ്‌ ഇഫക്‌ട്‌ ട്രാന്‍സിസ്റ്ററുകളും, 1980-കളില്‍ വ്യാപകമായ മോസ്‌ഫെറ്റും പ്രവര്‍ധക മേഖലയില്‍ വന്‍മാറ്റങ്ങളാണ്‌ വരുത്തിയത്‌. ഇന്ന്‌ ചിപ്പുകളുടെ രൂപത്തിലും പ്രവര്‍ധകങ്ങള്‍ ലഭ്യമാണ്‌. ഒരു ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്റര്‍ (BJT) ഉപയോഗിച്ച്‌ പൊതുഉത്സര്‍ജകം, പൊതുസംഗ്രാഹകം, പൊതുആധാരം എന്നിങ്ങനെ മൂന്ന്‌ വ്യത്യസ്‌ത രീതിയില്‍ പ്രവര്‍ധക പരിപഥങ്ങളെ സജ്ജീകരിക്കാം. ഇവ യഥാക്രമം ആധാര/സംഗ്രാഹക/ഉത്സര്‍ജക പ്രവര്‍ധകങ്ങള്‍ എന്നറിയപ്പെടുന്നു. ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററിനുപകരം FET/MOSFET ഘടിപ്പിച്ചും പ്രവര്‍ധകങ്ങള്‍ തയ്യാറാക്കാം. ബൈജങ്‌ഷന്‍ ട്രാന്‍സിസ്റ്ററുകളുടെ പരിമിതികള്‍ ഒഴിവാക്കാന്‍ ഇത്തരം സംവിധാനങ്ങള്‍ക്ക്‌ കഴിയും. കോമണ്‍ ഗേറ്റ്‌, കോമണ്‍ സോഴ്‌സ്‌, കോമണ്‍ ഡ്രയിന്‍ എന്നിങ്ങനെയുള്ള വ്യത്യസ്‌ത പ്രവര്‍ധക പരിപഥങ്ങള്‍ ഇതുപയോഗിച്ച്‌ നിര്‍മിക്കാം. വോള്‍ട്ടേജ്‌ പ്രവര്‍ധകങ്ങള്‍, ധാരാ പ്രവര്‍ധകങ്ങള്‍, പവര്‍ പ്രവര്‍ധകങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ധക പരിപഥങ്ങള്‍ നിലവിലുണ്ട്‌. വോള്‍ട്ടതാ പ്രവര്‍ധകങ്ങള്‍ മിക്ക ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലും ഒഴിച്ചുകൂടാനാകാത്ത ഘടകമാണ്‌. സാധാരണ ലൗഡ്‌സ്‌പീക്കറുകള്‍ ഉപയോഗപ്പെടുത്തുന്നത്‌ പവര്‍ പ്രവര്‍ധകങ്ങളാണ്‌. ഡിഫ്രന്‍ഷ്യല്‍ നിവേശ സൗകര്യമുള്ള പ്രവര്‍ധകങ്ങളാണ്‌ ഓപ്പറേഷണല്‍ ആംപ്ലിഫയറുകള്‍. ഒപാംപ്‌ എന്നറിയപ്പെടുന്ന ഇവയില്‍ വിവിധ ഘടകങ്ങള്‍ സൂക്ഷ്‌മമായി ഉള്‍ച്ചേര്‍ത്തിരിക്കുന്നു. കൂടിയ വോള്‍ട്ടതാ ഗെയിന്‍, കൂടിയ നിവേശ കര്‍ണരോധം, കുറഞ്ഞ നിര്‍ഗമ കര്‍ണരോധം എന്നിവ ഇത്തരം ഒപാംപുകളുടെ സവിശേഷതകളാണ്‌. നേര്‍യുഗ്മന, ഋണ ഫീഡ്‌ ബാക്കിങ്‌ രീതികളിലാണ്‌ ഇവയ്‌ക്കുള്ളിലെ പരിപഥങ്ങള്‍ സജ്ജീകരിക്കുന്നത്‌. നേര്‍ധാരയിലും പ്രത്യാവര്‍ത്തിധാരയിലും ഈ പ്രവര്‍ധകങ്ങള്‍ക്ക്‌ പ്രവര്‍ത്തിക്കാനാകും. നോ. പ്രവര്‍ധകം

ആംപ്ലിഫയര്‍ പരിപഥങ്ങള്‍

ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേര്‍ധാരാ സ്രാതസ്സില്‍നിന്നുള്ള ഊര്‍ജത്തെ ഒരു പ്രത്യാവര്‍ത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവില്‍ ഒരേ ദിശയില്‍ പ്രവഹിക്കുന്ന ധാരയില്‍ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളില്‍ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിര്‍മിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു.

വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിര്‍ഗമമായി നല്‍കുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നല്‍കുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റര്‍, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതല്‍ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയില്‍ ലഭ്യമാണ്‌.

ഒരു ചാര്‍ജിത കപ്പാസിറ്റര്‍ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാല്‍, ഊര്‍ജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസില്‍ ഊര്‍ജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാല്‍ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊര്‍ജപോഷണം നിര്‍വഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റര്‍ യഥാര്‍ഥത്തില്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുകയും നിര്‍ഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസില്‍ നിവേശത്തിന്‌ തിരിച്ചു നല്‍കി ദോലന-ആയാമം നിലനിര്‍ത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കില്‍, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിര്‍വീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളില്‍ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.

ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിര്‍ണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീര്‍ണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌.

വളരെ പ്രാധാന്യമര്‍ഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌ മള്‍ട്ടിവൈബ്രറ്റര്‍ പരിപഥം. കംപ്യൂട്ടറുകളില്‍ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റര്‍

ദോലന പരിപഥങ്ങള്‍

ഇലക്‌ട്രാണിക പരിപഥങ്ങളിലെ മറ്റൊരു അടിസ്ഥാനപരിപഥമാണ്‌ ദോലകങ്ങള്‍. ഒരു നേര്‍ധാരാ സ്രാതസ്സില്‍നിന്നുള്ള ഊര്‍ജത്തെ ഒരു പ്രത്യാവര്‍ത്തിധാരാ വോള്‍ട്ടതയാക്കി മാറ്റുന്ന പരിപഥങ്ങളാണിവ. സ്ഥിരയളവില്‍ ഒരേ ദിശയില്‍ പ്രവഹിക്കുന്ന ധാരയില്‍ ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കപ്പെടും എന്നതാണ്‌ ഇതിന്റെ അടിസ്ഥാനം. റേഡിയോ-ടെലിവിഷന്‍ പ്രക്ഷേപണ സംവിധാനങ്ങളില്‍ ഉന്നതാവൃത്തിയിലുള്ള സിഗ്നലുകള്‍ നിര്‍മിക്കാന്‍ ദോലകങ്ങള്‍ ഉപയോഗിക്കുന്നു. വിവിധതരം ദോലകങ്ങളുണ്ട്‌. സൈനവ തരംഗങ്ങള്‍ നിര്‍ഗമമായി നല്‍കുന്ന ദോലകങ്ങള്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും മറ്റു വിവിധരൂപത്തിലുള്ള (ചതുരം, സമചതുരം, പള്‍സ്‌) തരംഗങ്ങളെ നല്‍കുന്ന ദോലകങ്ങള്‍ നോണ്‍ സൈനുസോയിഡല്‍ ദോലകങ്ങള്‍ എന്നും അറിയപ്പെടുന്നു. ട്രാന്‍സിസ്റ്റര്‍, ഇന്‍ഡക്‌ടര്‍, കപ്പാസിറ്റര്‍, രോധകം എന്നിവയാണ്‌ ദോലകങ്ങളുടെ ഘടകങ്ങള്‍. വളരെ കുറഞ്ഞ ആവൃത്തി മുതല്‍ വളരെ കൂടിയ ആവൃത്തി വരെ മൂല്യമുള്ള ദോലനങ്ങള്‍ സൃഷ്‌ടിക്കുവാന്‍ കഴിവുള്ള ദോലകങ്ങള്‍ ഇന്ന്‌ വിപണിയില്‍ ലഭ്യമാണ്‌.

ഒരു ചാര്‍ജിത കപ്പാസിറ്റര്‍ ഇന്‍ഡക്‌ടറോടു ഘടിപ്പിക്കുമ്പോഴുണ്ടാകുന്ന വൈദ്യുതപ്രവാഹം ദോലനസ്വഭാവത്തോടുകൂടിയതാണ്‌. എന്നാല്‍, ഊര്‍ജനഷ്‌ടംമൂലം ഈ ദോലനം അവമന്ദിതമായിരിക്കും. ദോലനാവൃത്തി എന്ന സമവാക്യംകൊണ്ടു സൂചിപ്പിക്കാം. ഇവിടെ ഘ കമ്പിച്ചുരുളിന്റെ പ്രരകത്വവും ഇ കപ്പാസിറ്റന്‍സിന്റെ മൂല്യവുമാണ്‌. യഥാസമയം അനുയോജ്യമായ ഫേസില്‍ ഊര്‍ജം ഈ പരിപഥത്തിനു നല്‌കിക്കൊണ്ടിരുന്നാല്‍ സ്ഥിര-ആയാമത്തോടുകൂടിയ സന്തത ദോലനം സാധ്യമാണ്‌. L-ഉം, C-ഉം ഉള്‍പ്പെടുന്ന ടാങ്ക്‌ പരിപഥത്തെ ഒരു ട്രാന്‍സിസ്റ്ററിനോടു ഘടിപ്പിച്ച്‌ ഈ ഊര്‍ജപോഷണം നിര്‍വഹിക്കാം. ഇവിടെ ട്രാന്‍സിസ്റ്റര്‍ യഥാര്‍ഥത്തില്‍ ഒരു പ്രവര്‍ധകമായി വര്‍ത്തിക്കുകയും നിര്‍ഗമത്തിന്റെ ചെറിയ ഒരംശം അനുയോജ്യമായ ഫേസില്‍ നിവേശത്തിന്‌ തിരിച്ചു നല്‍കി ദോലന-ആയാമം നിലനിര്‍ത്തുകയും ചെയ്യുന്നു. ഇതിന്‌ "ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ' എന്നുപറയുന്നു. ധനാത്മക ഫീഡ്‌ബാക്ക്‌ ദോലനത്തെ സഹായിക്കുന്നു. ഋണാത്മക ഫീഡ്‌ബാക്കില്‍, ഫീഡ്‌ബാക്ക്‌ വോള്‍ട്ടത ഇന്‍പുട്ട്‌ വോള്‍ട്ടതയുമായി 180o ഫേസ്‌ വ്യത്യാസത്തിലായിരിക്കും. ഇതുമൂലം ഋണാത്മക ഫീഡ്‌ബാക്ക്‌ ഒരു പരിപഥത്തിലെ ദോലന പ്രവണതയെ നിര്‍വീര്യമാക്കുന്നു. നിയന്ത്രണ എന്‍ജിനീയറിങ്ങിന്റെ വിവിധ മണ്ഡലങ്ങളില്‍ ഫീഡ്‌ബാക്ക്‌ പ്രക്രിയ വളരെ ഫലപ്രദമായി ഉപയോഗിക്കപ്പെടുന്നുണ്ട്‌.

ടാങ്ക്‌ പരിപഥങ്ങള്‍ക്കു പകരം ആവൃത്തി നിയന്ത്രിക്കാനാണ്‌ രോധവും കപ്പാസിറ്റന്‍സും ഉള്ള ദോലന പരിപഥങ്ങള്‍ ഉപയോഗിക്കുന്നത്‌. രോധ-കപ്പാസിറ്റന്‍സ്‌ ജോടിയുടെ സമയാങ്ക(R-C)മാണ്‌ ഇവിടെ ദോലനത്തിന്റെ കാലം നിര്‍ണയിക്കുന്നത്‌. ഇത്തരം ദോലകങ്ങളെ ഞഇ ദോലകങ്ങളെന്നു പറയുന്നു. സൈനവ തരംഗങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും സങ്കീര്‍ണങ്ങളായ തരംഗരൂപങ്ങള്‍ ഉത്‌പാദിപ്പിക്കുന്ന ഞഇ ദോലകങ്ങളും പ്രചാരത്തിലുണ്ട്‌. വളരെ പ്രാധാന്യമര്‍ഹിക്കുന്ന ഒരു ദോലന പരിപഥമാണ്‌ മള്‍ട്ടിവൈബ്രറ്റര്‍ പരിപഥം. കംപ്യൂട്ടറുകളില്‍ ഉപയോഗിക്കുന്ന ഫ്‌ളിപ്‌-ഫ്‌ളോപ്‌ പരിപഥം, ആവൃത്തിവിഭജന പരിപഥങ്ങള്‍, കാഥോഡ്‌ റേ ഓസിലോസ്‌കോപ്പിലെ സിങ്ക്രണന പരിപഥങ്ങള്‍ എന്നിങ്ങനെ നിരവധി പ്രവര്‍ത്തനങ്ങളുടെ അടിസ്ഥാനപരിപഥ ദോലകം ബഹുകമ്പന പരിപഥം (multivibrator circuit) ആണ്‌. നോ. ഓസിലേറ്റര്‍

ചരിത്രം-വികാസം

1883-ല്‍ കണ്ടുപിടിച്ച എഡിസണ്‍ പ്രഭാവത്തെ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തിലെ പ്രാരംഭ ബിന്ദുവായി പരിഗണിക്കാം. നേര്‍ധാരയില്‍ പ്രവര്‍ത്തിക്കുന്ന വായുശൂന്യമായ വൈദ്യുത ബള്‍ബുകളുടെ ഫിലമെന്റിന്റെ ധനവൈദ്യുതിയുമായി ബന്ധിപ്പിച്ച അറ്റം കൂടുതല്‍ ചൂടാകുന്നതായും വേഗത്തില്‍ മുറിഞ്ഞുപോകുന്നതായും എഡിസണ്‍ ശ്രദ്ധിച്ചു. ധനവൈദ്യുതിയുമായി ബന്ധപ്പെടുത്തിയ മറ്റൊരു പ്ലേറ്റ്‌ ബള്‍ബിനകത്തു വയ്‌ക്കുകയാണെങ്കില്‍ പ്ലേറ്റ്‌ പരിപഥത്തില്‍ക്കൂടി ഒരു വൈദ്യുതപ്രവാഹം ഉണ്ടാകുന്നതായും അദ്ദേഹം മനസ്സിലാക്കി. ഇതിനാണ്‌ "എഡിസണ്‍ പ്രഭാവം' എന്നുപറയുന്നത്‌. ചൂടായ ഫിലമെന്റില്‍നിന്നും വിമുക്തമാകുന്ന ഇലക്‌ട്രോണുകള്‍ ധനവൈദ്യുതിയാല്‍ ആകര്‍ഷിക്കപ്പെട്ട്‌ പ്ലേറ്റിലെത്തുന്നതുമൂലം ബാഹ്യമായ പ്ലേറ്റ്‌ പരിപഥത്തില്‍ വിപരീത ദിശയില്‍ ഒരു വൈദ്യുതിപ്രവാഹം ഉണ്ടാകുന്നു. ബള്‍ബിനകത്ത്‌ ധനവൈദ്യുതിപ്രവാഹത്തിന്റെ ദിശ പ്ലേറ്റില്‍നിന്ന്‌ ഫിലമെന്റിലേക്കായിരിക്കും. 1904-ല്‍ ജോണ്‍ ഫ്‌ളെമിങ്‌ തന്റെ ഡയോഡ്‌ വാല്‍വിന്‌ പേറ്റെന്റ്‌ എടുത്തു. എഡിസണ്‍ പ്രഭാവം ഉപയോഗിച്ചാണ്‌ ഇതു പ്രവര്‍ത്തിക്കുന്നത്‌. ഇലക്‌ട്രോണുകള്‍ക്ക്‌ ഫിലമെന്റില്‍നിന്ന്‌ പ്ലേറ്റിലേക്കു മാത്രമേ പ്രവഹിക്കാന്‍ സാധിക്കുകയുള്ളൂ. വിപരീതദിശയിലേക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹം സാധാരണഗതിയില്‍ ഉണ്ടാകുന്നില്ല. ഒരു വശത്തേക്കുമാത്രം വൈദ്യുതി പ്രവഹിപ്പിക്കുന്ന ഒരു കവാടം പോലെ ഈ ഉപകരണം പ്രവര്‍ത്തിക്കുന്നു. ഇക്കാരണത്താല്‍ ഇതിനെ വാല്‍വ്‌ എന്നുവിളിക്കുന്നു. വായുശൂന്യമാക്കിയ ഒരു ഗ്ലാസ്‌നാളിയില്‍ ഫിലമെന്റ്‌, പ്ലേറ്റ്‌ എന്നീ രണ്ട്‌ ഇലക്‌ട്രോഡുകള്‍ സ്ഥിതിചെയ്യുന്നു. തന്മൂലം ഈ ഉപകരണത്തെ ഡയോഡ്‌ വാല്‍വ്‌ എന്നുപറയുന്നു.

പ്ലേറ്റ്‌ ധനാത്മകമായിരിക്കുമ്പോള്‍ മാത്രമേ ഫിലമെന്റില്‍നിന്ന്‌ ഇലക്‌ട്രോണുകള്‍ പ്ലേറ്റിലെത്തുകയുള്ളൂവെന്നതുകൊണ്ട്‌ പ്ലേറ്റുപരിപഥത്തില്‍ പ്രത്യാവര്‍ത്തിധാര പ്രയോഗിച്ചാല്‍ അത്‌ നേര്‍ധാര ആയി മാറുന്നു. ഈ പ്രവര്‍ത്തനത്തിനു ദിഷ്‌ടകരണം (rectification) എന്നുപറയുന്നു. ആദ്യകാലങ്ങളില്‍ വയര്‍ലസ്‌ സന്ദേശങ്ങള്‍ സ്വീകരിക്കുന്നതിന്‌ ഫ്‌ളെമിങ്‌ വാല്‍വ്‌ ഉപയോഗപ്പെട്ടു. ഇലക്‌ട്രോണികത്തിന്റെ ആദ്യകാലചരിത്രം റേഡിയോയുടെ വികാസവുമായി അഭേദ്യമായി ബന്ധപ്പെട്ടിരിക്കുന്നു. 1906-ല്‍ ലീഡി ഫോറസ്റ്റ്‌ എന്ന അമേരിക്കന്‍ ശാസ്‌ത്രജ്ഞന്‍ പ്ലേറ്റിനും ഫിലമെന്റിനും ഇടയ്‌ക്ക്‌ ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിനു തടസ്സം ഉണ്ടാകാത്തവിധം കമ്പിയഴിപോലുള്ള, ഗ്രിഡ്‌ എന്നു പേരായ മൂന്നാമതൊരു ഇലക്‌ട്രോഡുകൂടി ഉള്‍പ്പെടുത്തിക്കൊണ്ട്‌ ആദ്യത്തെ ട്രയോഡ്‌വാല്‍വ്‌ ഉണ്ടാക്കി. ഗ്രിഡില്‍ ഒരു ചെറിയ വോള്‍ട്ടത പ്രയോഗിച്ച്‌ പ്ലേറ്റ്‌ ധാരയെ ഫലപ്രദമായി നിയന്ത്രിക്കാമെന്ന്‌ അദ്ദേഹം മനസ്സിലാക്കി. ട്രയോഡിന്റെ കണ്ടുപിടിത്തമാണ്‌ ആധുനിക ഇലക്‌ട്രോണിക്‌ യുഗത്തിന്റെ തുടക്കം കുറിച്ചത്‌. ഇലക്‌ട്രോണിക വാല്‍വുകള്‍ പൊതുവേ നിയന്ത്രിത ചാലകങ്ങളായി പ്രവര്‍ത്തിക്കുന്നു. പുറമേയുള്ള പരിപഥങ്ങളില്‍നിന്നു വ്യത്യസ്‌ത വോള്‍ട്ടതകള്‍ വിവിധ ഇലക്‌ട്രോഡുകളില്‍ പ്രയോഗിക്കുകവഴിയാണ്‌ ഇതു സാധ്യമാകുന്നത്‌. വളരെ ചെറിയ വോള്‍ട്ടതാവ്യതിയാനങ്ങളെ അനേകമടങ്ങ്‌ പ്രവര്‍ധിപ്പിക്കുവാന്‍ ട്രയോഡ്‌ വാല്‍വിനു കഴിവുണ്ട്‌. ഇലക്‌ട്രോണിക്‌ വാല്‍വുകളുപയോഗിച്ച്‌ ഇപ്രകാരമുള്ള പ്രവര്‍ധനം സാധ്യമാക്കുന്ന സംവിധാനത്തെ പ്രവര്‍ധക പരിപഥം എന്നു പറയുന്നു. ഉന്നത ആവൃത്തിയില്‍ സന്തതമായ പ്രത്യാവര്‍ത്തി ഉത്‌പാദിപ്പിക്കാന്‍ ട്രയോഡ്‌വാല്‍വ്‌ ഉപയോഗിക്കാം. ഇവയ്‌ക്ക്‌ ദോലനപരിപഥങ്ങള്‍ (Oscillator circuits) എന്നാണ്‌ പേര്‌. റേഡിയോ തരംഗങ്ങളുടെ ഉത്‌പാദനത്തിന്‌ ഇവ ഉപകരിക്കുന്നു. ഇങ്ങനെ ദീര്‍ഘദൂരം സഞ്ചരിക്കാവുന്ന റേഡിയോ തരംഗങ്ങളെ പ്രവര്‍ധിപ്പിക്കാനും വാല്‍വുകള്‍ ഉപയോഗിക്കാമെന്നു വന്നതോടെ റേഡിയോപ്രക്ഷേപണവും സ്വീകരണവും സാധ്യമായി.

ട്രയോഡിന്റെ നിര്‍മാണത്തെത്തുടര്‍ന്ന്‌ നാല്‌ ഇലക്‌ട്രോഡുകളുള്ള ടെട്രോഡും അഞ്ച്‌ ഇലക്‌ട്രോഡുകളുള്ള പെന്റോഡും മറ്റു ബഹു-ഇലക്‌ട്രോഡ്‌ വാല്‍വുകളും നിര്‍മിക്കപ്പെട്ടു. കൂടുതല്‍ ഇലക്‌ട്രോഡുകള്‍ പ്രധാനമായും ട്രയോഡിന്റെ ദൂഷ്യങ്ങള്‍ പരിഹരിക്കുന്നതിനും ഇലക്‌ട്രോണ്‍ പ്രവാഹത്തിന്റെ നിയന്ത്രണം കൂടുതല്‍ കാര്യക്ഷമമാക്കുന്നതിനും വേണ്ടിയാണ്‌. ഇലക്‌ട്രോണിക പരിപഥങ്ങളുടെ സംവേദനക്ഷമത വര്‍ധിപ്പിക്കുന്നതിനും അവയുടെ ആവൃത്തിമേഖല വിസ്‌തൃതമാക്കുന്നതിനും ഇവ സഹായിച്ചു. ഉന്നതാവൃത്തിയുള്ള റേഡിയോതരംഗങ്ങളുടെ പ്രതിഫലനമുപയോഗിച്ച്‌ അകലെയുള്ള വസ്‌തുക്കളുടെ റേഡിയോസ്ഥാനനിര്‍ണയം (റഡാറിന്റെ പ്രവര്‍ത്തനരീതി) സാധ്യമാണെന്ന്‌ 1935-ല്‍ വാട്‌സണ്‍, വാട്ട്‌ എന്നിവര്‍ തെളിയിച്ചു. താമസിയാതെ റഡാറിന്‌ ഏറ്റവും അനുയോജ്യമായ മൈക്രാതരംഗങ്ങളുത്‌പാദിപ്പിക്കുന്ന മാഗ്നട്രോണ്‍, ക്ലിസ്റ്റ്രാണ്‍ എന്നിവ സംവിധാനം ചെയ്യപ്പെട്ടു. റഡാറാണ്‌ രണ്ടാംലോകയുദ്ധത്തിന്റെ അന്തിമഫലം നിശ്ചയിച്ചത്‌ എന്നുപോലും പറയാവുന്നതാണ്‌.

താഴ്‌ന്ന മര്‍ദത്തില്‍ ഹീലിയം, നിയോണ്‍ തുടങ്ങിയ വാതകങ്ങള്‍ നിറച്ച വാല്‍വുകള്‍ വോള്‍ട്ടതാനിയന്ത്രണത്തിനും മറ്റുമായി ഉപയോഗിക്കുന്നുണ്ട്‌. ഇവയെ പൊതുവേ ഗ്യാസ്‌ട്യൂബുകള്‍ എന്നുപറയുന്നു.

1948-ല്‍ യു.എസ്സിലെ ബെല്‍ ടെലിഫോണ്‍ ലബോറട്ടറിയില്‍ വച്ച്‌ ബ്രാറ്റയ്‌ന്‍, ബാര്‍ഡീന്‍, ഷോക്ക്‌ലി എന്നിവര്‍ ചേര്‍ന്ന്‌ ട്രോന്‍സിസ്റ്റര്‍ എന്നൊരു ചെറിയ ഉപകരണം കണ്ടുപിടിച്ചു. ഇത്‌ ഇലക്‌ട്രോണികത്തിന്റെ ചരിത്രത്തില്‍ നിര്‍ണായകമായ വഴിത്തിരിവായിരുന്നു. ട്രോന്‍സ്‌ഫര്‍, റെസിസ്റ്റര്‍ എന്നീ രണ്ടു പദങ്ങളുടെ സംയോജനംകൊണ്ടാണ്‌ ട്രോന്‍സിസ്റ്റര്‍ എന്ന വാക്കുണ്ടായിരിക്കുന്നത്‌. ജര്‍മേനിയം, സിലിക്കോണ്‍ തുടങ്ങിയ അര്‍ധചാലകവസ്‌തുക്കളാല്‍ നിര്‍മിതമായ ട്രോന്‍സിസ്റ്റര്‍ ഇലക്‌ട്രോണിക വാല്‍വുകളുടെ പ്രവര്‍ത്തനങ്ങളെല്ലാം ചെയ്യാന്‍ സമര്‍ഥമായ ഒരു ചെറിയ വസ്‌തുവാണ്‌. ഉയര്‍ന്ന വൈദ്യുതപവര്‍ കൈകാര്യം ചെയ്യേണ്ട സന്ദര്‍ഭങ്ങളിലൊഴികെ മിക്ക രംഗങ്ങളിലും ഇന്ന്‌ വാല്‍വുകള്‍ക്കുപകരം ട്രോന്‍സിസ്റ്റര്‍ ഉപയോഗിച്ചുവരുന്നു. ഒതുക്കം, ആയുര്‍ദൈര്‍ഘ്യം, ആഘാതങ്ങളെയും കമ്പനങ്ങളെയും ചെറുത്തുനില്‌ക്കുവാനുള്ള കഴിവ്‌, വളരെ കുറഞ്ഞ താപവികിരണം, കുറഞ്ഞ വോള്‍ട്ടതയില്‍ പ്രവര്‍ത്തിക്കുവാനുള്ള കഴിവ്‌ എന്നിങ്ങനെ വളരെയേറെ ഗുണങ്ങള്‍ വാല്‍വുകളെ അപേക്ഷിച്ച്‌ ട്രോന്‍സിസ്റ്ററുകള്‍ക്കുണ്ട്‌. ട്രോന്‍സിസ്റ്ററുകളുടെ ആവിര്‍ഭാവത്തോടെ ഇലക്‌ട്രോണികോപകരണങ്ങള്‍ ഒതുക്കമുള്ളതും കൊണ്ടുനടക്കാവുന്നതും ആയിത്തീര്‍ന്നു.

ട്രോന്‍സിസ്റ്ററിന്റെ കണ്ടുപിടിത്തത്തെത്തുടര്‍ന്ന്‌ അര്‍ധചാലകവസ്‌തുക്കളുടെ വൈദ്യുതഗുണങ്ങളെക്കുറിച്ച്‌ സമഗ്രമായ പരീക്ഷണങ്ങള്‍ ലോകത്തെമ്പാടുമുള്ള ഗവേഷണസ്ഥാപനങ്ങളില്‍ പൂര്‍വാധികം താത്‌പര്യത്തോടെ നടത്തപ്പെട്ടു. അര്‍ധചാലകഭൗതികത്തിലുണ്ടായ ഈ പുരോഗതിയുടെ ഫലമായി നിശ്ചിത ഉദ്ദേശ്യങ്ങളോടുകൂടിയ അനേകം പ്രത്യേകതരം അര്‍ധചാലകോപാധികള്‍ നിര്‍മിതമായി. സെനര്‍ ഡയോഡ്‌, വാരക്‌റ്റര്‍ (വോള്‍ട്ടതാ നിയന്ത്രിത കപ്പാസിറ്റര്‍), നിയന്ത്രിത റെക്‌റ്റിഫയറുകള്‍, യൂണിജങ്‌ഷന്‍ ട്രോന്‍സിസ്റ്റര്‍, ഫീല്‍ഡ്‌ ഇഫക്‌റ്റ്‌ ട്രോന്‍സിസ്റ്റര്‍, ഫൊട്ടോഡയോഡ്‌, ലൈറ്റ്‌ എമിറ്റിങ്‌ ഡയോഡ്‌, ബൈ ഡയറക്‌ഷണല്‍ ട്രോന്‍സിസ്റ്റര്‍ തുടങ്ങിയവ ഇവയില്‍പ്പെടുന്നു. അത്യുന്നതാവൃത്തിയിലും മൈക്രാതരംഗമേഖലകളിലും പ്രവര്‍ത്തിക്കുന്ന ഖരാവസ്ഥോപാധികള്‍ ഇന്നു ലഭ്യമാണ്‌. ഇങ്ങനെ ഖരാവസ്ഥാഭൗതികം ഇന്ന്‌ ആധുനിക ഇലക്‌ട്രോണികരംഗത്ത്‌ വമ്പിച്ച പരിവര്‍ത്തനങ്ങള്‍ വരുത്തിയിരിക്കുന്നു.

സൂക്ഷ്‌മവത്‌കരണത്തിനുള്ള പ്രവണത തുടര്‍ന്നതിന്റെ ഫലമായി സമകാലിത പരിപഥങ്ങള്‍ (ഐസി) രംഗത്തുവന്നു. ട്രോന്‍സിസ്റ്ററുകള്‍, ഡയോഡുകള്‍, റെസിസ്റ്ററുകള്‍ തുടങ്ങിയ അനേകം ഘടകങ്ങള്‍ ഒരൊറ്റ അര്‍ധചാലകത്തുണ്ടിന്മേല്‍ത്തന്നെ ഒരേസമയം വിന്യസിപ്പിച്ചു ചേര്‍ത്തുണ്ടാക്കിയ സമ്പൂര്‍ണ പരിപഥങ്ങളടങ്ങിയ ഇലക്‌ട്രോണികോപാധിയാണ്‌ ഐസി കംപ്യൂട്ടറുകളിലും ഇലക്‌ട്രോണിക്‌ കാല്‍ക്കുലേറ്ററുകളിലും ഇവ ധാരാളമായി ഉപയോഗിച്ചുവരുന്നു. ഉപകരണങ്ങളുടെ വലുപ്പത്തെ കാര്യമായി കുറയ്‌ക്കുന്നതിന്‌ ഇതുകൊണ്ട്‌ കഴിയുന്നു. മാത്രമല്ല, വന്‍തോതില്‍ നിര്‍മിക്കുന്നതിലുള്ള എളുപ്പംനിമിത്തം ഇവയുടെ വിലയും വളരെ കുറവാണ്‌. ഇലക്‌ട്രോണികോപകരണങ്ങളുടെ സാധ്യതകളും കാര്യക്ഷമതയും വര്‍ധിപ്പിക്കുന്നതിനും അവ വളരെ ഒതുക്കമുള്ളതും വിശ്വസനീയവും ആക്കിത്തീര്‍ക്കുന്നതിനും ഈ പുരോഗതി കാര്യമായി സഹായിച്ചിട്ടുണ്ട്‌. വോള്‍ട്ട്‌മീറ്റര്‍, അമീറ്റര്‍ തുടങ്ങിയ പല പരിമാണോപകരണങ്ങളുടെ നിര്‍ഗമ മാപനമൂല്യം അക്കത്തില്‍ത്തന്നെ കാണിക്കുന്ന "ഡിജിറ്റല്‍ റീഡ്‌ ഔട്ട്‌' ഉള്ളവയായി രൂപപ്പെടുത്താന്‍ ഐസികള്‍ സഹായമായി.

മേസര്‍, ലേസര്‍ എന്നീ ഉപകരണങ്ങളുടെ ആവിര്‍ഭാവത്തോടുകൂടി ക്വാണ്ടം ഇലക്‌ട്രോണികം എന്നൊരു ശാഖകൂടി ആധുനിക ഇലക്‌ട്രോണികത്തിനുണ്ടായി. തന്മാത്രകളുടെ കമ്പനസ്‌തരങ്ങള്‍, അര്‍ധചാലകങ്ങളിലെ ഇലക്‌ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും ഊര്‍ജസ്‌തരങ്ങള്‍ തുടങ്ങിയ ക്വാണ്ടീകൃത സിസ്റ്റങ്ങളും ഇലക്‌ട്രോണികരീതികളും തമ്മിലുള്ള സംയോജനഫലമായുടലെടുത്തതാണ്‌ ക്വാണ്ടം ഇലക്‌ട്രോണികം. ഇതുമൂലം ഇലക്‌ട്രോണികരീതികളുടെ ഉപര്യാവൃത്തിസീമ ഇന്‍ഫ്രാറെഡ്‌-ദൃശ്യതരംഗമേഖലകളിലേക്കും കൂടി വ്യാപിച്ചിരിക്കുന്നതായി കരുതാം.

ഇലക്‌ട്രോണികം-ഉപയോഗങ്ങള്‍

വാര്‍ത്താവിനിമയം, ഗതാഗതം, ബഹിരാകാശപര്യവേക്ഷണം, ശുദ്ധവും പ്രയുക്തവുമായ ഗവേഷണമേഖലകള്‍ എന്നീ മണ്ഡലങ്ങളിലെല്ലാംതന്നെ ഇലക്‌ട്രോണികം അദ്വിതീയമായ സ്ഥാനം കരസ്ഥമാക്കിയിരിക്കുന്നു. ചികിത്സാരംഗത്തും വ്യാവസായ രംഗത്തും രാജ്യരക്ഷ പ്രതിരോധമേഖലകളിലുമെല്ലാം ഇലക്‌ട്രോണികം വരുത്തിയ മാറ്റങ്ങള്‍ വിപ്ലവകരമാണ്‌.

വൈദ്യശാസ്‌ത്രം

ഇലക്‌ട്രോണികരീതികളുടെ ഉപയോഗംകൊണ്ടു നേട്ടങ്ങളുണ്ടായിട്ടുള്ള ഒന്നാണ്‌ വൈദ്യശുശ്രൂഷാരംഗം. രോഗനിര്‍ണയത്തിനും നിര്‍ണായക ഘട്ടങ്ങളില്‍ രോഗിയുടെ ശാരീരികപ്രവര്‍ത്തനങ്ങള്‍ നിരന്തരം നിരീക്ഷിച്ചു കൊണ്ടിരിക്കുന്നതിനും ആപദ്‌ഘട്ടങ്ങളില്‍ ഡോക്‌ടര്‍ക്കു മുന്നറിയിപ്പു കൊടുക്കുന്നതിനും മറ്റുമായി ഇലക്‌ട്രോണികരീതികള്‍ ഇന്നുപയോഗപ്പെടുത്തിവരുന്നുണ്ട്‌. ഹൃദയത്തിന്റെ പ്രവര്‍ത്തനം പരിശോധിക്കുന്നതിനുള്ള ഇലക്‌ട്രോകാര്‍ഡിയോഗ്രാഫ്‌, തലച്ചോറിന്റെ വൈദ്യുതക്രിയാശീലത നിരീക്ഷിക്കാനുതകുന്ന ഇലക്‌ട്രോ എന്‍സെഫലോഗ്രാം, രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ അളവ്‌ കണക്കാക്കുന്നതിനുള്ള ബ്ലഡ്‌-ഗ്ലൂക്കോസ്‌ മോണിറ്റര്‍ തുടങ്ങിയവയുടെ ഉപയോഗം ഇന്നു സര്‍വസാധാരണമായിരിക്കുന്നു. കംപ്യൂട്ടറുകളുടെ സഹായത്തോടുകൂടിയ രോഗനിര്‍ണയവും ചികിത്സാവിധികളും നടപ്പില്‍ വന്നുകഴിഞ്ഞിട്ടുണ്ട്‌. നോ. ഇലക്‌ട്രോ ഡയഗ്നോസിസ്‌

വ്യവസായം

ആധുനികവ്യവസായരംഗത്ത്‌ ഇലക്‌ട്രോണികത്തിനുള്ള സ്ഥാനം പ്രത്യേകം എടുത്തുപറയേണ്ട ആവശ്യമില്ല. വ്യവസായരംഗത്തെ പുരോഗതി ഇലക്‌ട്രോണികത്തിന്റെ വികാസവുമായി നേരിട്ടു ബന്ധപ്പെട്ടിരിക്കുന്നു. ഇലക്‌ട്രോണിക നിയന്ത്രണങ്ങളും കംപ്യൂട്ടറുമാണ്‌ വ്യവസായരംഗത്തെ യന്ത്രവത്‌കരണത്തിന്‌ അടിസ്ഥാനമായി വര്‍ത്തിക്കുന്നത്‌. ഇതിനുപുറമേ മാനേജ്‌മെന്റ്‌മേഖലകളിലും കംപ്യൂട്ടറുകള്‍ ഉപയോഗിച്ചുവരുന്നു.

പ്രതിരോധം

ഇലക്‌ട്രോണിക സാങ്കേതികതയെ അവലംബിക്കുന്ന ഉപകരണങ്ങളും ഉപായ(techniques)ങ്ങളും ഉപയോഗിച്ച്‌ ശത്രുവിന്റെ പോര്‍വിമാനം, റഡാര്‍, മിസൈലുകള്‍ തുടങ്ങിയ വിനാശകാരികളെ പ്രതിരോധിക്കുന്നതും ശത്രുപക്ഷം റേഡിയോതരംഗങ്ങള്‍ വഴി കൈമാറുന്ന നിര്‍ദേശങ്ങള്‍, സന്ദേശങ്ങള്‍, സൈനികനീക്കങ്ങളെ സംബന്ധിച്ച വിവരങ്ങള്‍ തുടങ്ങിയവ ചോര്‍ത്തിയെടുക്കുന്നതും ഇപ്പോള്‍ യുദ്ധരംഗത്തെ അനിവാര്യമായ നടപടിയായി മാറിയിരിക്കുന്നു. ഈദൃശ യുദ്ധമുറകളെ മൊത്തത്തില്‍ ഇലക്‌ട്രോണിക പ്രതിയുക്തി (Electronic Counter Measures-ECM) എന്നു വിശേഷിപ്പിക്കുന്നു. വാര്‍ത്താവിനിമയം, മാര്‍ഗനിര്‍ദേശം, കണ്ടെത്തലും തുമ്പുണ്ടാക്കലും, നിയന്ത്രണം തുടങ്ങിയവയ്‌ക്കുള്ള ആധുനികസംവിധാനങ്ങള്‍ പ്രാകാശിക(optic)സങ്കേതങ്ങളെ, വിശിഷ്യ നഗ്നനേത്രങ്ങള്‍ക്കു അഗോചരമായ ഇന്‍ഫ്രാറെഡ്‌ (infrared) വികിരണത്തെ അത്യധികം ആശ്രയിക്കുന്ന അവസ്ഥയാണ്‌ ഇപ്പോഴുള്ളത്‌. ഇത്തരത്തിലുള്ള പ്രതിയുക്തിവ്യവസ്ഥ ഇലക്‌ട്രോണിക സങ്കേതങ്ങള്‍ക്കുമുപരി വിദ്യുത്‌കാന്തിക വര്‍ണരാജിയുടെ സങ്കീര്‍ണവും വ്യാപകവുമായ മൊത്തം സാധ്യതകളെയും പ്രയോജനപ്പെടുത്തുന്നു.

ലോകത്തിലെ വന്‍കിട സൈനികശക്തികള്‍ ആക്രമണപ്രതിരോധസജ്ജീകരണങ്ങള്‍ക്കായി വിദ്യുത്‌കാന്തിക സങ്കേതങ്ങളെ ഏതളവില്‍ ഉപയോഗിക്കുന്നുവെന്നതും, കൂടുതല്‍ മെച്ചപ്പെട്ട പ്രയോജനം കൈവരുത്തുവാന്‍ എന്തുമാത്രം ഗവേഷണപഠനങ്ങളില്‍ ഏര്‍പ്പെട്ടിരിക്കുന്നുവെന്നതും "ഇലക്‌ട്രോണിക യുദ്ധമുറ' എന്ന സംജ്ഞയുടെ പരിധിയില്‍പ്പെടുന്ന വിഷയങ്ങളാണ്‌. പരസ്‌പരം യുദ്ധത്തിലേര്‍പ്പെടുമ്പോള്‍ മാത്രമല്ല, സമാധാനകാലത്തുപോലും ഇലക്‌ട്രോണിക യുദ്ധതന്ത്രം വികസിപ്പിക്കുവാനുള്ള തീവ്രശ്രമം സൈനികശക്തികള്‍ സദാ പിന്തുടര്‍ന്നുകൊണ്ടിരിക്കുന്നു. ഗൂഢവും നിശ്ശബ്‌ദവും അതിവ്യാപകവുമായ ഒരു കര്‍മമണ്ഡലമാണ്‌ ഇലക്‌ട്രോണിക യുദ്ധമുറ.

വാര്‍ത്താവിനിമയം

ആധുനിക വാര്‍ത്താവിനിമയരംഗത്തിന്റെ മുഖച്ഛായ തന്നെ മാറ്റിയത്‌ ഇലക്‌ട്രോണിക രംഗത്തുണ്ടായ നൂതന കണ്ടുപിടിത്തങ്ങളാണ്‌. മൊബൈല്‍ ഫോണും ഇന്റര്‍നെറ്റും മനുഷ്യജീവിത രീതികളെത്തന്നെ മാറ്റിമറിച്ചു. പഴയകാല ലൈന്‍ കമ്യൂണിക്കേഷനും ആധുനിക വയര്‍ലെസ്‌ സാങ്കേതികവിദ്യയും വാര്‍ത്താവിനിമയ രംഗത്തുണ്ടാക്കിയ മാറ്റങ്ങള്‍ വിപ്ലവാത്മകമാണ്‌. നോ. ഇലക്‌ട്രോണിക-വാര്‍ത്താവിനിമയം

(ഡോ. സി.പി. ഗിരിജാവല്ലഭന്‍; പ്രാഫ. കെ. പാപ്പൂട്ടി; സ.പ.)

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍