This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

അണു-ഊര്‍ജം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(New page: = അണു-ഊര്‍ജം = അീാശര ലിലൃഴ്യ അണുകേന്ദ്രത്തില്‍നിന്നു മോചിപ്പിക്കപ്പെ...)
വരി 1: വരി 1:
= അണു-ഊര്‍ജം =
= അണു-ഊര്‍ജം =
 +
Atomic energy
-
അീാശര ലിലൃഴ്യ
+
അണുകേന്ദ്രത്തില്‍നിന്നു മോചിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം. അണുകേന്ദ്ര-ഊര്‍ജത്തെ അണു-ഊര്‍ജം എന്നും പറയാം. രാസപ്രവര്‍ത്തനം നടക്കുമ്പോള്‍ ഉണ്ടാകുന്ന ഊര്‍ജമാണ് രാസ-ഊര്‍ജം. രാസപ്രവര്‍ത്തനത്തില്‍ അണുവിലെ ബാഹ്യ-ഇലക്ട്രോണുകള്‍ മാത്രം പങ്കെടുക്കുന്നതിനാല്‍ പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഏര്‍പ്പെടുന്ന മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റമൊന്നും സംഭവിക്കുന്നില്ല. അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനങ്ങ(Nuclear reactions)ളില്‍ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റം ഉണ്ടാകുകയും ഊര്‍ജം ബഹിര്‍ഗമിക്കുകയും ചെയ്യും. ഈ മാറ്റമാണ് അണുകേന്ദ്ര-ഊര്‍ജത്തിന്റെ ഉറവിടം. രാസ-ഊര്‍ജത്തിന്റെ അനേകം മടങ്ങ് മൂല്യമുള്ളതാണ് ഈ ഊര്‍ജം.
-
അണുകേന്ദ്രത്തില്‍നിന്നു മോചിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം. അണുകേന്ദ്ര-ഊര്‍ജത്തെ അണു-ഊര്‍ജം എന്നും പറയാം. രാസപ്രവര്‍ത്തനം നടക്കുമ്പോള്‍ ഉണ്ടാകുന്ന ഊര്‍ജമാണ് രാസ-ഊര്‍ജം. രാസപ്രവര്‍ത്തനത്തില്‍ അണുവിലെ ബാഹ്യ-ഇലക്ട്രോണുകള്‍ മാത്രം പങ്കെടുക്കുന്നതിനാല്‍ പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഏര്‍പ്പെടുന്ന മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റമൊന്നും സംഭവിക്കുന്നില്ല. അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനങ്ങ(ചൌരഹലമൃ ൃലമരശീിേ)ളില്‍ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റം ഉണ്ടാകുകയും ഊര്‍ജം ബഹിര്‍ഗമിക്കുകയും ചെയ്യും. ഈ മാറ്റമാണ് അണുകേന്ദ്ര-ഊര്‍ജത്തിന്റെ ഉറവിടം. രാസ-ഊര്‍ജത്തിന്റെ അനേകം മടങ്ങ് മൂല്യമുള്ളതാണ് ഈ ഊര്‍ജം.
+
അണു-ഊര്‍ജമെന്ന സങ്കല്പം. യുറേനിയം തുടങ്ങിയ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ സ്വയം ചാര്‍ജിതകണങ്ങളെ (charged particles) ഉത്സര്‍ജിക്കുന്നുണ്ടെന്ന് കണ്ടുപിടിച്ചതോടെ (1896: റേഡിയോ ആക്റ്റിവത) റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങ(radio active elements)ളുടെ അണുകേന്ദ്രങ്ങള്‍ ഊര്‍ജസ്രോതസ് ആണെന്നു വ്യക്തമാക്കപ്പെട്ടു. പക്ഷേ, റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങളില്‍നിന്നു ഉത്സര്‍ജിക്കപ്പെടുന്ന ഊര്‍ജം വളരെ നിസ്സാരമാണ്. 1930-ഓടുകൂടി ചാര്‍ജിതകണങ്ങളെ ത്വരണം ചെയ്ത് അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം നടത്താമെന്ന് കണ്ടുപിടിച്ചതോടെയാണ് അണുകേന്ദ്രവിഘടനം (fission) ഊര്‍ജത്തിന്റെ അളവറ്റ ഉറവിടമാണെന്ന് മനസ്സിലാക്കിയത്. ഉയര്‍ന്ന ദ്രവ്യമാനസംഖ്യകളില്‍ മാത്രം ഒതുങ്ങിനില്‍ക്കാത്തതും നിയന്ത്രിക്കാവുന്നതും ആയ അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം റേഡിയോ ആക്റ്റിവതയില്‍നിന്ന് വിഭിന്നമായ ഒരു പ്രക്രിയയാണ്. അതുകൊണ്ടാണ് അണുപ്രതിവര്‍ത്തനം ആശാവഹമായത്.
-
അണു-ഊര്‍ജമെന്ന സങ്കല്പം. യുറേനിയം തുടങ്ങിയ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ സ്വയം ചാര്‍ജിതകണങ്ങളെ (രവമൃഴലറ ുമൃശേരഹല) ഉത്സര്‍ജിക്കുന്നുണ്ടെന്ന് കണ്ടുപിടിച്ചതോടെ (1896: റേഡിയോ ആക്റ്റിവത) റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങ(ൃമറശീ മരശ്േല ലഹലാലി)ളുടെ അണുകേന്ദ്രങ്ങള്‍ ഊര്‍ജസ്രോതസ് ആണെന്നു വ്യക്തമാക്കപ്പെട്ടു. പക്ഷേ, റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങളില്‍നിന്നു ഉത്സര്‍ജിക്കപ്പെടുന്ന ഊര്‍ജം വളരെ നിസ്സാരമാണ്. 1930-ഓടുകൂടി ചാര്‍ജിതകണങ്ങളെ ത്വരണം ചെയ്ത് അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം നടത്താമെന്ന് കണ്ടുപിടിച്ചതോടെയാണ് അണുകേന്ദ്രവിഘടനം (ളശശീിൈ) ഊര്‍ജത്തിന്റെ അളവറ്റ ഉറവിടമാണെന്ന് മനസ്സിലാക്കിയത്. ഉയര്‍ന്ന ദ്രവ്യമാനസംഖ്യകളില്‍ മാത്രം ഒതുങ്ങിനില്‍ക്കാത്തതും നിയന്ത്രിക്കാവുന്നതും ആയ അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം റേഡിയോ ആക്റ്റിവതയില്‍നിന്ന് വിഭിന്നമായ ഒരു പ്രക്രിയയാണ്. അതുകൊണ്ടാണ് അണുപ്രതിവര്‍ത്തനം ആശാവഹമായത്.
+
അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം (Nuclear reaction). 1919-ല്‍ റഥര്‍ഫോര്‍ഡ് നൈട്രജന്‍ അണുവില്‍ ?-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചപ്പോള്‍ ഓക്സിജനും പ്രോട്ടോണും ഉണ്ടാകുന്നതായി കണ്ടു.
-
 
+
-
അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം (ചൌരഹലമൃ ൃലമരശീിേ). 1919-ല്‍ റഥര്‍ഫോര്‍ഡ് നൈട്രജന്‍ അണുവില്‍ ?-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചപ്പോള്‍ ഓക്സിജനും പ്രോട്ടോണും ഉണ്ടാകുന്നതായി കണ്ടു.
+
  
  
-
ചരിത്രപ്രധാനമായ ഈ പരീക്ഷണം ആണ് 'മൂലകാന്തരണം'  (ൃമിാൌമേശീിേ) സാധ്യമാണെന്ന് ആദ്യമായി തെളിയിച്ചത്. തുടര്‍ന്ന് പല അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനങ്ങളും കണ്ടുപിടിക്കപ്പെട്ടു. ന്യൂട്രോണ്‍ കണ്ടുപിടിച്ചത് ബെരിലിയം അണുവില്‍ ?-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചാണ്:
+
                  14N7 +4He2    12C6+1no
 +
 
 +
ചരിത്രപ്രധാനമായ ഈ പരീക്ഷണം ആണ് 'മൂലകാന്തരണം'  (transmutation) സാധ്യമാണെന്ന് ആദ്യമായി തെളിയിച്ചത്. തുടര്‍ന്ന് പല അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനങ്ങളും കണ്ടുപിടിക്കപ്പെട്ടു. ന്യൂട്രോണ്‍ കണ്ടുപിടിച്ചത് ബെരിലിയം അണുവില്‍ a-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചാണ്:
 +
          9Be4 + 4He2  - 12C6+1no
 +
 
   അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ രണ്ടു മാര്‍ഗങ്ങള്‍ ഉണ്ട്.
   അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ രണ്ടു മാര്‍ഗങ്ങള്‍ ഉണ്ട്.
-
1. അണുകേന്ദ്രവിഘടനം (ചൌരഹലമൃ ളശശീിൈ). 1939-ല്‍ ജര്‍മനിയില്‍ ഓട്ടോഹാനും അദ്ദേഹത്തിന്റെ സഹപ്രവര്‍ത്തകരായ ലിസിമെയ്റ്റ്നറും എഫ്. സ്റ്റ്രാസ്മാനും യുറേനിയം അണുവില്‍ ന്യൂട്രോണ്‍കൊണ്ട് ആഘാതമേല്പിച്ചപ്പോള്‍ ലഭിച്ച വസ്തു, സൂക്ഷ്മരാസവിശ്ളേഷണത്തിന് വിധേയമാക്കി; വ്യുത്പന്നത്തില്‍ ബേരിയത്തിന്റെ ഐസോടോപ് ഉണ്ടെന്നു കണ്ടു. യുറേനിയത്തിന്റെ അണുസംഖ്യ 92-ഉം ബേരിയത്തിന്റേത് 56-ഉം ആണ്. അതിനാല്‍ യുറേനിയം അണു ഏതാണ്ട് രണ്ടു തുല്യഭാഗങ്ങളായി വിഘടനം ചെയ്യപ്പെട്ടിരിക്കുന്നു എന്ന നിഗമനത്തില്‍ അവര്‍ എത്തി. വ്യുത്പന്നത്തില്‍ 36 അണുസംഖ്യയുള്ള ക്രിപ്റ്റോണ്‍ വാതകവും അവര്‍ കണ്ടെത്തി. യുറേനിയത്തിന്റെ വിഘടനഫലമായി ലന്‍ഥാനം (ഘമിവേമിൌാ) തുടങ്ങിയ മൂലകങ്ങളും ഉണ്ടാകുമെന്ന് തെളിഞ്ഞു.
+
1. അണുകേന്ദ്രവിഘടനം (Nuclear fission). 1939-ല്‍ ജര്‍മനിയില്‍ ഓട്ടോഹാനും അദ്ദേഹത്തിന്റെ സഹപ്രവര്‍ത്തകരായ ലിസിമെയ്റ്റ്നറും എഫ്. സ്റ്റ്രാസ്മാനും യുറേനിയം അണുവില്‍ ന്യൂട്രോണ്‍കൊണ്ട് ആഘാതമേല്പിച്ചപ്പോള്‍ ലഭിച്ച വസ്തു, സൂക്ഷ്മരാസവിശ്ളേഷണത്തിന് വിധേയമാക്കി; വ്യുത്പന്നത്തില്‍ ബേരിയത്തിന്റെ ഐസോടോപ് ഉണ്ടെന്നു കണ്ടു. യുറേനിയത്തിന്റെ അണുസംഖ്യ 92-ഉം ബേരിയത്തിന്റേത് 56-ഉം ആണ്. അതിനാല്‍ യുറേനിയം അണു ഏതാണ്ട് രണ്ടു തുല്യഭാഗങ്ങളായി വിഘടനം ചെയ്യപ്പെട്ടിരിക്കുന്നു എന്ന നിഗമനത്തില്‍ അവര്‍ എത്തി. വ്യുത്പന്നത്തില്‍ 36 അണുസംഖ്യയുള്ള ക്രിപ്റ്റോണ്‍ വാതകവും അവര്‍ കണ്ടെത്തി. യുറേനിയത്തിന്റെ വിഘടനഫലമായി ലന്‍ഥാനം (Lanthanum) തുടങ്ങിയ മൂലകങ്ങളും ഉണ്ടാകുമെന്ന് തെളിഞ്ഞു.
-
യുറേനിയം-വിഘടനഫലമായുണ്ടാകുന്ന ഊര്‍ജം ഏറിയകൂറും ഡ235 ഐസോടോപ്പില്‍ നിന്നാണ് ഉത്പാദിപ്പിക്കപ്പെടുന്നത്. ഡ235 അണുകേന്ദ്രം മന്ദന്യൂട്രോണ്‍ പിടിച്ചെടുത്ത് വിഘടിതമാകുമ്പോള്‍ ഒരു വിഘടനത്തിന് ശരാശരി 2.5 ന്യൂട്രോണ്‍ എന്ന നിരക്കില്‍ ന്യൂട്രോണുകളെ വിസര്‍ജിക്കുന്നു:
+
യുറേനിയം-വിഘടനഫലമായുണ്ടാകുന്ന ഊര്‍ജം ഏറിയകൂറും u-235 ഐസോടോപ്പില്‍ നിന്നാണ് ഉത്പാദിപ്പിക്കപ്പെടുന്നത്. u-235 അണുകേന്ദ്രം മന്ദന്യൂട്രോണ്‍ പിടിച്ചെടുത്ത് വിഘടിതമാകുമ്പോള്‍ ഒരു വിഘടനത്തിന് ശരാശരി 2.5 ന്യൂട്രോണ്‍ എന്ന നിരക്കില്‍ ന്യൂട്രോണുകളെ വിസര്‍ജിക്കുന്നു:
-
മേല്‍കൊടുത്ത പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഒരു ഡ235 അണുകേന്ദ്രം വിഘടിതമാകുമ്പോള്‍ ഒരു ബേരിയം അണുവും ഒരു ക്രിപ്റ്റോണ്‍ അണുവും 3 ന്യൂട്രോണുകളും ഉണ്ടാകുന്നു. ഈ ന്യൂട്രോണുകള്‍ വീണ്ടും യുറേനിയം-235 അണുക്കളുമായി പ്രതിപ്രവര്‍ത്തിക്കുന്നു. പ്രതിപ്രവര്‍ത്തനം ഇങ്ങനെ തുടരുന്നതിന്റെ ഫലമായി ഒരു ശൃംഖലാപ്രതിപ്രവര്‍ത്തനം നടക്കുകയും വളരെ അധികം ഊര്‍ജം വിസര്‍ജിക്കപ്പെടുകയും ചെയ്യുന്നു. അണുബോംബില്‍ ഈ തത്ത്വമാണ് പ്രയോഗിക്കുന്നത്. മേല്‍വിവരിച്ച അണുകേന്ദ്രവിഘടനം നടക്കുമ്പോള്‍ മോചിക്കപ്പെടുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ കണ്ടെത്താം. അണുദ്രവ്യമാനമാത്രയില്‍ ഡ235-ന്റെ അണുഭാരം 235.1175, ന്യൂട്രോണിന്റെ ഭാരം 1.00898, ആമ 141-ന്റെ അണുഭാരം 140.9577, ഗൃ92-ന്റെ അണുഭാരം 91.9264. വിഘടനത്തിനു മുമ്പുള്ള ദ്രവ്യമാനം = 236.1265,  വിഘടനത്തിനുശേഷം ആകെ ദ്രവ്യമാനം = 235.9110; അതുകൊണ്ട് ദ്രവ്യമാനനഷ്ടം = 0.2155. ഈ ദ്രവ്യമാനനഷ്ടമാണ് ഊര്‍ജമായി പ്രത്യക്ഷപ്പെടുന്നത്. ഒരു ഗ്രാം അണു, അതായത് 235 ഗ്രാം ഡ235-ന്റെ വിഘടനഫലമായി 5.45 ദശലക്ഷം കി.വാ.മ. വിദ്യുച്ഛക്തിക്ക് തുല്യമായ ഊര്‍ജം, ഉത്പാദിപ്പിക്കപ്പെടുന്നു. 1 മെഗാവാട്ട് ഉത്പാദനശേഷിയുള്ള ഒരു വിദ്യുച്ഛക്തിനിലയത്തിലെ 277 ദിവസത്തെ ഉത്പന്നത്തിന് തുല്യമാണ് ഈ ഊര്‍ജം.
+
മേല്‍കൊടുത്ത പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഒരു u-235 അണുകേന്ദ്രം വിഘടിതമാകുമ്പോള്‍ ഒരു ബേരിയം അണുവും ഒരു ക്രിപ്റ്റോണ്‍ അണുവും 3 ന്യൂട്രോണുകളും ഉണ്ടാകുന്നു. ഈ ന്യൂട്രോണുകള്‍ വീണ്ടും യുറേനിയം-235 അണുക്കളുമായി പ്രതിപ്രവര്‍ത്തിക്കുന്നു. പ്രതിപ്രവര്‍ത്തനം ഇങ്ങനെ തുടരുന്നതിന്റെ ഫലമായി ഒരു ശൃംഖലാപ്രതിപ്രവര്‍ത്തനം നടക്കുകയും വളരെ അധികം ഊര്‍ജം വിസര്‍ജിക്കപ്പെടുകയും ചെയ്യുന്നു. അണുബോംബില്‍ ഈ തത്ത്വമാണ് പ്രയോഗിക്കുന്നത്. മേല്‍വിവരിച്ച അണുകേന്ദ്രവിഘടനം നടക്കുമ്പോള്‍ മോചിക്കപ്പെടുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ കണ്ടെത്താം. അണുദ്രവ്യമാനമാത്രയില്‍ u235-ന്റെ അണുഭാരം 235.1175, ന്യൂട്രോണിന്റെ ഭാരം 1.00898, ആമ 141-ന്റെ അണുഭാരം 140.9577, ഗൃ92-ന്റെ അണുഭാരം 91.9264. വിഘടനത്തിനു മുമ്പുള്ള ദ്രവ്യമാനം = 236.1265,  വിഘടനത്തിനുശേഷം ആകെ ദ്രവ്യമാനം = 235.9110; അതുകൊണ്ട് ദ്രവ്യമാനനഷ്ടം = 0.2155. ഈ ദ്രവ്യമാനനഷ്ടമാണ് ഊര്‍ജമായി പ്രത്യക്ഷപ്പെടുന്നത്. ഒരു ഗ്രാം അണു, അതായത് 235 ഗ്രാം ഡ235-ന്റെ വിഘടനഫലമായി 5.45 ദശലക്ഷം കി.വാ.മ. വിദ്യുച്ഛക്തിക്ക് തുല്യമായ ഊര്‍ജം, ഉത്പാദിപ്പിക്കപ്പെടുന്നു. 1 മെഗാവാട്ട് ഉത്പാദനശേഷിയുള്ള ഒരു വിദ്യുച്ഛക്തിനിലയത്തിലെ 277 ദിവസത്തെ ഉത്പന്നത്തിന് തുല്യമാണ് ഈ ഊര്‍ജം.
അണുകേന്ദ്ര റിയാക്റ്ററുകളില്‍ വിഘടനപ്രതിപ്രവര്‍ത്തനം ഗ്രാഫൈറ്റ് പോലുള്ള മന്ദീകാരികള്‍ ഉപയോഗിച്ച് നിയന്ത്രിച്ചാണ് ഊര്‍ജ-ഉത്പാദനം നടത്തുന്നത്.
അണുകേന്ദ്ര റിയാക്റ്ററുകളില്‍ വിഘടനപ്രതിപ്രവര്‍ത്തനം ഗ്രാഫൈറ്റ് പോലുള്ള മന്ദീകാരികള്‍ ഉപയോഗിച്ച് നിയന്ത്രിച്ചാണ് ഊര്‍ജ-ഉത്പാദനം നടത്തുന്നത്.
-
2. അണുകേന്ദ്ര സംയോജനം (ചൌരഹലമൃ ളൌശീിെ). രണ്ടു അണുകേന്ദ്രങ്ങളെ ചേര്‍ത്ത് വേറൊരു പുതിയ അണുകേന്ദ്രം ഉണ്ടാക്കുന്ന പ്രക്രിയയ്ക്കാണ് അണുകേന്ദ്രസംയോജനം എന്നു പറയുന്നത്. താഴ്ന്ന ദ്രവ്യമാനസംഖ്യകളുള്ള അണുകേന്ദ്രങ്ങള്‍ക്ക് വേണ്ടത്ര ത്വരണം കൊടുത്താല്‍ അവ സംയോജിക്കുമെന്ന് യുറേനിയം അണുകേന്ദ്രവിഘടനം കണ്ടുപിടിക്കുന്നതിനു മുമ്പുതന്നെ അറിയപ്പെട്ടിരുന്നു. 1934-ല്‍ എം.എല്‍.ഇ. ഒലിഫാന്റും പി. ഹാര്‍ടെക്കും ഡ്യൂട്ടറോണ്‍ - ഡ്യൂട്ടറോണ്‍ സംഘട്ടനം വഴി ട്രിഷ്യയം ഉത്പാദിപ്പിച്ചു:  
+
2. അണുകേന്ദ്ര സംയോജനം (Nuclear fusion). രണ്ടു അണുകേന്ദ്രങ്ങളെ ചേര്‍ത്ത് വേറൊരു പുതിയ അണുകേന്ദ്രം ഉണ്ടാക്കുന്ന പ്രക്രിയയ്ക്കാണ് അണുകേന്ദ്രസംയോജനം എന്നു പറയുന്നത്. താഴ്ന്ന ദ്രവ്യമാനസംഖ്യകളുള്ള അണുകേന്ദ്രങ്ങള്‍ക്ക് വേണ്ടത്ര ത്വരണം കൊടുത്താല്‍ അവ സംയോജിക്കുമെന്ന് യുറേനിയം അണുകേന്ദ്രവിഘടനം കണ്ടുപിടിക്കുന്നതിനു മുമ്പുതന്നെ അറിയപ്പെട്ടിരുന്നു. 1934-ല്‍ എം.എല്‍.ഇ. ഒലിഫാന്റും പി. ഹാര്‍ടെക്കും ഡ്യൂട്ടറോണ്‍ - ഡ്യൂട്ടറോണ്‍ സംഘട്ടനം വഴി ട്രിഷ്യയം ഉത്പാദിപ്പിച്ചു:  
 +
 
 +
 
 +
2D1 + 2d1 - 3H1 + H1
പക്ഷേ, ഈ പ്രതിപ്രവര്‍ത്തനത്തിനുള്ള ഒരു ന്യൂനത ഇത് സ്വയം പോഷകമല്ലെന്നതാണ്.
പക്ഷേ, ഈ പ്രതിപ്രവര്‍ത്തനത്തിനുള്ള ഒരു ന്യൂനത ഇത് സ്വയം പോഷകമല്ലെന്നതാണ്.
രണ്ടു ഡ്യൂട്ടറിയം- അണുകേന്ദ്രങ്ങള്‍ സംയോജിച്ച് ഹീലിയം അണു ഉണ്ടാകുന്ന ഒരു പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഉത്സര്‍ജിക്കുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ വ്യക്തമാക്കാം:
രണ്ടു ഡ്യൂട്ടറിയം- അണുകേന്ദ്രങ്ങള്‍ സംയോജിച്ച് ഹീലിയം അണു ഉണ്ടാകുന്ന ഒരു പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഉത്സര്‍ജിക്കുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ വ്യക്തമാക്കാം:
 +
                 
-
അണു ദ്രവ്യമാനമാത്രയില്‍ ഡ്യൂട്ടറിയത്തിന്റെ ഭാരം 2.01471-ഉം ഹീലിയത്തിന്റേത് 4.00388-ഉം ആണ്. ഇതില്‍ നിന്ന് ദ്രവ്യമാനനഷ്ടം 0.02544 എന്നു കിട്ടുന്നു. അതായത്, 2 ഗ്രാം ഡ്യൂട്ടറിയത്തില്‍നിന്ന് 3.2 ??105 കി.വാ.മ. ഊര്‍ജം ലഭിക്കുന്നു. ഒരു ഗ്രാം അണുകേന്ദ്രത്തില്‍നിന്നു ലഭിക്കുന്ന ഊര്‍ജം കണക്കാക്കിയാല്‍ സംയോജനമാണ് വിഘടനത്തെക്കാള്‍ ലാഭകരം എന്നു കാണാം.
+
              2D1 + 2D1 - 4He2
-
സൂര്യനിലും നക്ഷത്രങ്ങളിലും ഊര്‍ജോത്പാദനം നടക്കുന്നത് സംയോജനം വഴിയാണ്. ചാര്‍ജിത അണുകേന്ദ്രങ്ങള്‍ സംയോജിപ്പിക്കാന്‍ വളരെ അധികം ഊര്‍ജം നല്കണം. ഇതിന് അണുകേന്ദ്രങ്ങളെ 50–100 ദശലക്ഷം ഡിഗ്രിവരെ ചൂടാക്കണം. ഈ പ്രക്രിയ ശ്രമകരമാണ്. ഹൈഡ്രജന്‍ ബോംബില്‍ ഇത്രയ്ക്ക് ഉയര്‍ന്ന താപനില സൃഷ്ടിക്കുന്നത് വിഘടനസ്ഫോടനം വഴിയാണ്. പക്ഷേ, സംയോജനപ്രതിപ്രവര്‍ത്തനം അഥവാ താപ-അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനം (വേലൃാീിൌരഹലമൃ ൃലമരശീിേ) വഴി ഉത്പാദിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം എങ്ങനെ നിയന്ത്രണാധീനമാക്കാം എന്നതാണ് പ്രശ്നം. പ്ളാസ്മ വഴി (നോ: പ്ളാസ്മാ ഭൌതികം) 60 ദശലക്ഷം ഡിഗ്രി താപനില വരെ എത്തുവാന്‍ സാധിച്ചിട്ടുണ്ടെങ്കിലും സംയോജനം നടക്കുവാന്‍ വേണ്ടത്ര സമയം ഈ താപനില നിലനിര്‍ത്തുവാന്‍ കഴിഞ്ഞിട്ടില്ല. ഇക്കാരണത്താല്‍ ഒരു സംയോജന റിയാക്റ്റര്‍ ഇനിയും നിര്‍മിക്കേണ്ടിയിരിക്കുന്നു.
 
-
അണുകേന്ദ്ര-ഊര്‍ജം സമാധാന ആവശ്യങ്ങള്‍ക്ക്. ഖനനം, തോടുവെട്ടല്‍, വലിയ കുഴികുത്തല്‍ തുടങ്ങിയ പല ആവശ്യങ്ങള്‍ക്കും രാസസ്ഫോടക വസ്തുക്കള്‍ ധാരാളം ഉപയോഗിക്കുന്നുണ്ട്. ഈ ആവശ്യങ്ങള്‍ ലഘു അണുസ്ഫോടനങ്ങള്‍ നടത്തി സാധിക്കാവുന്നതാണ്. രാസസ്ഫോടകവുമായി താരതമ്യപ്പെടുത്തുമ്പോള്‍ ഊര്‍ജനഷ്ടം വളരെ കൂടുതലുണ്ടെങ്കിലും പ്രവര്‍ത്തനച്ചെലവ് പരിഗണിച്ചാല്‍ അണുസ്ഫോടനങ്ങള്‍ നടത്തുന്നതാണ് ലാഭകരം. അണുസ്ഫോടനങ്ങളുടെ മറ്റൊരു മുഖ്യപ്രയോജനം കൃത്രിമ ഭൂകമ്പങ്ങള്‍ സൃഷ്ടിച്ച് ഭൂകമ്പങ്ങളെപ്പറ്റിയുള്ള ഗവേഷണങ്ങള്‍ നടത്താമെന്നുള്ളതാണ്.
+
അണു ദ്രവ്യമാനമാത്രയില്‍ ഡ്യൂട്ടറിയത്തിന്റെ ഭാരം 2.01471-ഉം ഹീലിയത്തിന്റേത് 4.00388-ഉം ആണ്. ഇതില്‍ നിന്ന് ദ്രവ്യമാനനഷ്ടം 0.02544 എന്നു കിട്ടുന്നു. അതായത്, 2 ഗ്രാം ഡ്യൂട്ടറിയത്തില്‍നിന്ന് 3.2 * 105 കി.വാ.മ. ഊര്‍ജം ലഭിക്കുന്നു. ഒരു ഗ്രാം അണുകേന്ദ്രത്തില്‍നിന്നു ലഭിക്കുന്ന ഊര്‍ജം കണക്കാക്കിയാല്‍ സംയോജനമാണ് വിഘടനത്തെക്കാള്‍ ലാഭകരം എന്നു കാണാം.
 +
 
 +
സൂര്യനിലും നക്ഷത്രങ്ങളിലും ഊര്‍ജോത്പാദനം നടക്കുന്നത് സംയോജനം വഴിയാണ്. ചാര്‍ജിത അണുകേന്ദ്രങ്ങള്‍ സംയോജിപ്പിക്കാന്‍ വളരെ അധികം ഊര്‍ജം നല്കണം. ഇതിന് അണുകേന്ദ്രങ്ങളെ 50–100 ദശലക്ഷം ഡിഗ്രിവരെ ചൂടാക്കണം. ഈ പ്രക്രിയ ശ്രമകരമാണ്. ഹൈഡ്രജന്‍ ബോംബില്‍ ഇത്രയ്ക്ക് ഉയര്‍ന്ന താപനില സൃഷ്ടിക്കുന്നത് വിഘടനസ്ഫോടനം വഴിയാണ്. പക്ഷേ, സംയോജനപ്രതിപ്രവര്‍ത്തനം അഥവാ താപ-അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനം (thermonuclear reaction) വഴി ഉത്പാദിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം എങ്ങനെ നിയന്ത്രണാധീനമാക്കാം എന്നതാണ് പ്രശ്നം. പ്ളാസ്മ വഴി (നോ: പ്ളാസ്മാ ഭൌതികം) 60 ദശലക്ഷം ഡിഗ്രി താപനില വരെ എത്തുവാന്‍ സാധിച്ചിട്ടുണ്ടെങ്കിലും സംയോജനം നടക്കുവാന്‍ വേണ്ടത്ര സമയം ഈ താപനില നിലനിര്‍ത്തുവാന്‍ കഴിഞ്ഞിട്ടില്ല. ഇക്കാരണത്താല്‍ ഒരു സംയോജന റിയാക്റ്റര്‍ ഇനിയും നിര്‍മിക്കേണ്ടിയിരിക്കുന്നു.
 +
 
 +
'''അണുകേന്ദ്ര-ഊര്‍ജം സമാധാന ആവശ്യങ്ങള്‍ക്ക്. ഖനനം, തോടുവെട്ടല്‍, വലിയ കുഴികുത്തല്‍ തുടങ്ങിയ പല ആവശ്യങ്ങള്‍ക്കും രാസസ്ഫോടക വസ്തുക്കള്‍ ധാരാളം ഉപയോഗിക്കുന്നുണ്ട്. ഈ ആവശ്യങ്ങള്‍ ലഘു അണുസ്ഫോടനങ്ങള്‍ നടത്തി സാധിക്കാവുന്നതാണ്. രാസസ്ഫോടകവുമായി താരതമ്യപ്പെടുത്തുമ്പോള്‍ ഊര്‍ജനഷ്ടം വളരെ കൂടുതലുണ്ടെങ്കിലും പ്രവര്‍ത്തനച്ചെലവ് പരിഗണിച്ചാല്‍ അണുസ്ഫോടനങ്ങള്‍ നടത്തുന്നതാണ് ലാഭകരം. അണുസ്ഫോടനങ്ങളുടെ മറ്റൊരു മുഖ്യപ്രയോജനം കൃത്രിമ ഭൂകമ്പങ്ങള്‍ സൃഷ്ടിച്ച് ഭൂകമ്പങ്ങളെപ്പറ്റിയുള്ള ഗവേഷണങ്ങള്‍ നടത്താമെന്നുള്ളതാണ്.
ഊര്‍ജവിഭവങ്ങള്‍ കുറഞ്ഞുവരുന്നതിനാല്‍ അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ ധാരാളം അണുശക്തിനിലയങ്ങള്‍ ലോകത്തില്‍ പല രാജ്യങ്ങളിലും സ്ഥാപിച്ചുവരുന്നു.  
ഊര്‍ജവിഭവങ്ങള്‍ കുറഞ്ഞുവരുന്നതിനാല്‍ അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ ധാരാളം അണുശക്തിനിലയങ്ങള്‍ ലോകത്തില്‍ പല രാജ്യങ്ങളിലും സ്ഥാപിച്ചുവരുന്നു.  
കപ്പലുകള്‍ ഓടിക്കാന്‍ അണുകേന്ദ്രശക്തി പ്രയോജനപ്പെടുന്നുണ്ട്. അണുശക്തികൊണ്ടു പ്രവര്‍ത്തിക്കുന്ന അന്തര്‍വാഹിനികള്‍ ഉണ്ട്. റോക്കറ്റുകള്‍ പ്രവര്‍ത്തിപ്പിക്കാനും അണുകേന്ദ്രശക്തി ഉപയോഗിച്ചുതുടങ്ങുമെന്നതില്‍ സംശയമില്ല. സമുദ്രജലം വാറ്റി ശുദ്ധമാക്കി ശുദ്ധജലക്ഷാമത്തെ നേരിടാന്‍ അണുകേന്ദ്ര-ഊര്‍ജം പ്രയോജനപ്പെടുത്തുന്നുണ്ട്. അമേരിക്കയില്‍ സമുദ്രജലശുദ്ധീകരണത്തിനുള്ള പരീക്ഷണപ്ളാന്റ് നിര്‍മിച്ചുകഴിഞ്ഞിരിക്കുന്നു. അതിന് ഇനിയും നിരവധി ഉപയോഗങ്ങള്‍ കണ്ടെത്തുവാന്‍ കഴിയും. നോ: അണു, അണുകേന്ദ്രം, അണുകേന്ദ്രവിജ്ഞാനീയം, അണുകേന്ദ്ര റിയാക്റ്റര്‍, അണുശബ്ദാവലി, ന്യൂക്ളിയര്‍ എന്‍ജിനീയറിങ്, പ്ളാസ്മാഭൌതികം
കപ്പലുകള്‍ ഓടിക്കാന്‍ അണുകേന്ദ്രശക്തി പ്രയോജനപ്പെടുന്നുണ്ട്. അണുശക്തികൊണ്ടു പ്രവര്‍ത്തിക്കുന്ന അന്തര്‍വാഹിനികള്‍ ഉണ്ട്. റോക്കറ്റുകള്‍ പ്രവര്‍ത്തിപ്പിക്കാനും അണുകേന്ദ്രശക്തി ഉപയോഗിച്ചുതുടങ്ങുമെന്നതില്‍ സംശയമില്ല. സമുദ്രജലം വാറ്റി ശുദ്ധമാക്കി ശുദ്ധജലക്ഷാമത്തെ നേരിടാന്‍ അണുകേന്ദ്ര-ഊര്‍ജം പ്രയോജനപ്പെടുത്തുന്നുണ്ട്. അമേരിക്കയില്‍ സമുദ്രജലശുദ്ധീകരണത്തിനുള്ള പരീക്ഷണപ്ളാന്റ് നിര്‍മിച്ചുകഴിഞ്ഞിരിക്കുന്നു. അതിന് ഇനിയും നിരവധി ഉപയോഗങ്ങള്‍ കണ്ടെത്തുവാന്‍ കഴിയും. നോ: അണു, അണുകേന്ദ്രം, അണുകേന്ദ്രവിജ്ഞാനീയം, അണുകേന്ദ്ര റിയാക്റ്റര്‍, അണുശബ്ദാവലി, ന്യൂക്ളിയര്‍ എന്‍ജിനീയറിങ്, പ്ളാസ്മാഭൌതികം
 +
(പി.എം. മധുസൂദനന്‍)
(പി.എം. മധുസൂദനന്‍)

09:59, 18 ഫെബ്രുവരി 2008-നു നിലവിലുണ്ടായിരുന്ന രൂപം

അണു-ഊര്‍ജം

Atomic energy

അണുകേന്ദ്രത്തില്‍നിന്നു മോചിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം. അണുകേന്ദ്ര-ഊര്‍ജത്തെ അണു-ഊര്‍ജം എന്നും പറയാം. രാസപ്രവര്‍ത്തനം നടക്കുമ്പോള്‍ ഉണ്ടാകുന്ന ഊര്‍ജമാണ് രാസ-ഊര്‍ജം. രാസപ്രവര്‍ത്തനത്തില്‍ അണുവിലെ ബാഹ്യ-ഇലക്ട്രോണുകള്‍ മാത്രം പങ്കെടുക്കുന്നതിനാല്‍ പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഏര്‍പ്പെടുന്ന മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റമൊന്നും സംഭവിക്കുന്നില്ല. അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനങ്ങ(Nuclear reactions)ളില്‍ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ക്ക് മാറ്റം ഉണ്ടാകുകയും ഊര്‍ജം ബഹിര്‍ഗമിക്കുകയും ചെയ്യും. ഈ മാറ്റമാണ് അണുകേന്ദ്ര-ഊര്‍ജത്തിന്റെ ഉറവിടം. രാസ-ഊര്‍ജത്തിന്റെ അനേകം മടങ്ങ് മൂല്യമുള്ളതാണ് ഈ ഊര്‍ജം.

അണു-ഊര്‍ജമെന്ന സങ്കല്പം. യുറേനിയം തുടങ്ങിയ മൂലകങ്ങളുടെ അണുകേന്ദ്രങ്ങള്‍ സ്വയം ചാര്‍ജിതകണങ്ങളെ (charged particles) ഉത്സര്‍ജിക്കുന്നുണ്ടെന്ന് കണ്ടുപിടിച്ചതോടെ (1896: റേഡിയോ ആക്റ്റിവത) റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങ(radio active elements)ളുടെ അണുകേന്ദ്രങ്ങള്‍ ഊര്‍ജസ്രോതസ് ആണെന്നു വ്യക്തമാക്കപ്പെട്ടു. പക്ഷേ, റേഡിയോ ആക്റ്റിവ് മൂലകങ്ങളില്‍നിന്നു ഉത്സര്‍ജിക്കപ്പെടുന്ന ഊര്‍ജം വളരെ നിസ്സാരമാണ്. 1930-ഓടുകൂടി ചാര്‍ജിതകണങ്ങളെ ത്വരണം ചെയ്ത് അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം നടത്താമെന്ന് കണ്ടുപിടിച്ചതോടെയാണ് അണുകേന്ദ്രവിഘടനം (fission) ഊര്‍ജത്തിന്റെ അളവറ്റ ഉറവിടമാണെന്ന് മനസ്സിലാക്കിയത്. ഉയര്‍ന്ന ദ്രവ്യമാനസംഖ്യകളില്‍ മാത്രം ഒതുങ്ങിനില്‍ക്കാത്തതും നിയന്ത്രിക്കാവുന്നതും ആയ അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം റേഡിയോ ആക്റ്റിവതയില്‍നിന്ന് വിഭിന്നമായ ഒരു പ്രക്രിയയാണ്. അതുകൊണ്ടാണ് അണുപ്രതിവര്‍ത്തനം ആശാവഹമായത്.

അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനം (Nuclear reaction). 1919-ല്‍ റഥര്‍ഫോര്‍ഡ് നൈട്രജന്‍ അണുവില്‍ ?-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചപ്പോള്‍ ഓക്സിജനും പ്രോട്ടോണും ഉണ്ടാകുന്നതായി കണ്ടു.

                 14N7 +4He2    12C6+1no

ചരിത്രപ്രധാനമായ ഈ പരീക്ഷണം ആണ് 'മൂലകാന്തരണം' (transmutation) സാധ്യമാണെന്ന് ആദ്യമായി തെളിയിച്ചത്. തുടര്‍ന്ന് പല അണുകേന്ദ്ര പ്രതിപ്രവര്‍ത്തനങ്ങളും കണ്ടുപിടിക്കപ്പെട്ടു. ന്യൂട്രോണ്‍ കണ്ടുപിടിച്ചത് ബെരിലിയം അണുവില്‍ a-കണംകൊണ്ട് ആഘാതം ഏല്പിച്ചാണ്:

         9Be4 + 4He2   - 12C6+1no
 
  അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ രണ്ടു മാര്‍ഗങ്ങള്‍ ഉണ്ട്.

1. അണുകേന്ദ്രവിഘടനം (Nuclear fission). 1939-ല്‍ ജര്‍മനിയില്‍ ഓട്ടോഹാനും അദ്ദേഹത്തിന്റെ സഹപ്രവര്‍ത്തകരായ ലിസിമെയ്റ്റ്നറും എഫ്. സ്റ്റ്രാസ്മാനും യുറേനിയം അണുവില്‍ ന്യൂട്രോണ്‍കൊണ്ട് ആഘാതമേല്പിച്ചപ്പോള്‍ ലഭിച്ച വസ്തു, സൂക്ഷ്മരാസവിശ്ളേഷണത്തിന് വിധേയമാക്കി; വ്യുത്പന്നത്തില്‍ ബേരിയത്തിന്റെ ഐസോടോപ് ഉണ്ടെന്നു കണ്ടു. യുറേനിയത്തിന്റെ അണുസംഖ്യ 92-ഉം ബേരിയത്തിന്റേത് 56-ഉം ആണ്. അതിനാല്‍ യുറേനിയം അണു ഏതാണ്ട് രണ്ടു തുല്യഭാഗങ്ങളായി വിഘടനം ചെയ്യപ്പെട്ടിരിക്കുന്നു എന്ന നിഗമനത്തില്‍ അവര്‍ എത്തി. വ്യുത്പന്നത്തില്‍ 36 അണുസംഖ്യയുള്ള ക്രിപ്റ്റോണ്‍ വാതകവും അവര്‍ കണ്ടെത്തി. യുറേനിയത്തിന്റെ വിഘടനഫലമായി ലന്‍ഥാനം (Lanthanum) തുടങ്ങിയ മൂലകങ്ങളും ഉണ്ടാകുമെന്ന് തെളിഞ്ഞു.

യുറേനിയം-വിഘടനഫലമായുണ്ടാകുന്ന ഊര്‍ജം ഏറിയകൂറും u-235 ഐസോടോപ്പില്‍ നിന്നാണ് ഉത്പാദിപ്പിക്കപ്പെടുന്നത്. u-235 അണുകേന്ദ്രം മന്ദന്യൂട്രോണ്‍ പിടിച്ചെടുത്ത് വിഘടിതമാകുമ്പോള്‍ ഒരു വിഘടനത്തിന് ശരാശരി 2.5 ന്യൂട്രോണ്‍ എന്ന നിരക്കില്‍ ന്യൂട്രോണുകളെ വിസര്‍ജിക്കുന്നു:

മേല്‍കൊടുത്ത പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഒരു u-235 അണുകേന്ദ്രം വിഘടിതമാകുമ്പോള്‍ ഒരു ബേരിയം അണുവും ഒരു ക്രിപ്റ്റോണ്‍ അണുവും 3 ന്യൂട്രോണുകളും ഉണ്ടാകുന്നു. ഈ ന്യൂട്രോണുകള്‍ വീണ്ടും യുറേനിയം-235 അണുക്കളുമായി പ്രതിപ്രവര്‍ത്തിക്കുന്നു. പ്രതിപ്രവര്‍ത്തനം ഇങ്ങനെ തുടരുന്നതിന്റെ ഫലമായി ഒരു ശൃംഖലാപ്രതിപ്രവര്‍ത്തനം നടക്കുകയും വളരെ അധികം ഊര്‍ജം വിസര്‍ജിക്കപ്പെടുകയും ചെയ്യുന്നു. അണുബോംബില്‍ ഈ തത്ത്വമാണ് പ്രയോഗിക്കുന്നത്. മേല്‍വിവരിച്ച അണുകേന്ദ്രവിഘടനം നടക്കുമ്പോള്‍ മോചിക്കപ്പെടുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ കണ്ടെത്താം. അണുദ്രവ്യമാനമാത്രയില്‍ u235-ന്റെ അണുഭാരം 235.1175, ന്യൂട്രോണിന്റെ ഭാരം 1.00898, ആമ 141-ന്റെ അണുഭാരം 140.9577, ഗൃ92-ന്റെ അണുഭാരം 91.9264. വിഘടനത്തിനു മുമ്പുള്ള ദ്രവ്യമാനം = 236.1265, വിഘടനത്തിനുശേഷം ആകെ ദ്രവ്യമാനം = 235.9110; അതുകൊണ്ട് ദ്രവ്യമാനനഷ്ടം = 0.2155. ഈ ദ്രവ്യമാനനഷ്ടമാണ് ഊര്‍ജമായി പ്രത്യക്ഷപ്പെടുന്നത്. ഒരു ഗ്രാം അണു, അതായത് 235 ഗ്രാം ഡ235-ന്റെ വിഘടനഫലമായി 5.45 ദശലക്ഷം കി.വാ.മ. വിദ്യുച്ഛക്തിക്ക് തുല്യമായ ഊര്‍ജം, ഉത്പാദിപ്പിക്കപ്പെടുന്നു. 1 മെഗാവാട്ട് ഉത്പാദനശേഷിയുള്ള ഒരു വിദ്യുച്ഛക്തിനിലയത്തിലെ 277 ദിവസത്തെ ഉത്പന്നത്തിന് തുല്യമാണ് ഈ ഊര്‍ജം.

അണുകേന്ദ്ര റിയാക്റ്ററുകളില്‍ വിഘടനപ്രതിപ്രവര്‍ത്തനം ഗ്രാഫൈറ്റ് പോലുള്ള മന്ദീകാരികള്‍ ഉപയോഗിച്ച് നിയന്ത്രിച്ചാണ് ഊര്‍ജ-ഉത്പാദനം നടത്തുന്നത്.

2. അണുകേന്ദ്ര സംയോജനം (Nuclear fusion). രണ്ടു അണുകേന്ദ്രങ്ങളെ ചേര്‍ത്ത് വേറൊരു പുതിയ അണുകേന്ദ്രം ഉണ്ടാക്കുന്ന പ്രക്രിയയ്ക്കാണ് അണുകേന്ദ്രസംയോജനം എന്നു പറയുന്നത്. താഴ്ന്ന ദ്രവ്യമാനസംഖ്യകളുള്ള അണുകേന്ദ്രങ്ങള്‍ക്ക് വേണ്ടത്ര ത്വരണം കൊടുത്താല്‍ അവ സംയോജിക്കുമെന്ന് യുറേനിയം അണുകേന്ദ്രവിഘടനം കണ്ടുപിടിക്കുന്നതിനു മുമ്പുതന്നെ അറിയപ്പെട്ടിരുന്നു. 1934-ല്‍ എം.എല്‍.ഇ. ഒലിഫാന്റും പി. ഹാര്‍ടെക്കും ഡ്യൂട്ടറോണ്‍ - ഡ്യൂട്ടറോണ്‍ സംഘട്ടനം വഴി ട്രിഷ്യയം ഉത്പാദിപ്പിച്ചു:


2D1 + 2d1 - 3H1 + H1

പക്ഷേ, ഈ പ്രതിപ്രവര്‍ത്തനത്തിനുള്ള ഒരു ന്യൂനത ഇത് സ്വയം പോഷകമല്ലെന്നതാണ്.

രണ്ടു ഡ്യൂട്ടറിയം- അണുകേന്ദ്രങ്ങള്‍ സംയോജിച്ച് ഹീലിയം അണു ഉണ്ടാകുന്ന ഒരു പ്രതിപ്രവര്‍ത്തനത്തില്‍ ഉത്സര്‍ജിക്കുന്ന ഊര്‍ജത്തിന്റെ അളവ് ഇങ്ങനെ വ്യക്തമാക്കാം:


              2D1 + 2D1 - 4He2


അണു ദ്രവ്യമാനമാത്രയില്‍ ഡ്യൂട്ടറിയത്തിന്റെ ഭാരം 2.01471-ഉം ഹീലിയത്തിന്റേത് 4.00388-ഉം ആണ്. ഇതില്‍ നിന്ന് ദ്രവ്യമാനനഷ്ടം 0.02544 എന്നു കിട്ടുന്നു. അതായത്, 2 ഗ്രാം ഡ്യൂട്ടറിയത്തില്‍നിന്ന് 3.2 * 105 കി.വാ.മ. ഊര്‍ജം ലഭിക്കുന്നു. ഒരു ഗ്രാം അണുകേന്ദ്രത്തില്‍നിന്നു ലഭിക്കുന്ന ഊര്‍ജം കണക്കാക്കിയാല്‍ സംയോജനമാണ് വിഘടനത്തെക്കാള്‍ ലാഭകരം എന്നു കാണാം.

സൂര്യനിലും നക്ഷത്രങ്ങളിലും ഊര്‍ജോത്പാദനം നടക്കുന്നത് സംയോജനം വഴിയാണ്. ചാര്‍ജിത അണുകേന്ദ്രങ്ങള്‍ സംയോജിപ്പിക്കാന്‍ വളരെ അധികം ഊര്‍ജം നല്കണം. ഇതിന് അണുകേന്ദ്രങ്ങളെ 50–100 ദശലക്ഷം ഡിഗ്രിവരെ ചൂടാക്കണം. ഈ പ്രക്രിയ ശ്രമകരമാണ്. ഹൈഡ്രജന്‍ ബോംബില്‍ ഇത്രയ്ക്ക് ഉയര്‍ന്ന താപനില സൃഷ്ടിക്കുന്നത് വിഘടനസ്ഫോടനം വഴിയാണ്. പക്ഷേ, സംയോജനപ്രതിപ്രവര്‍ത്തനം അഥവാ താപ-അണുകേന്ദ്രപ്രതിപ്രവര്‍ത്തനം (thermonuclear reaction) വഴി ഉത്പാദിപ്പിക്കപ്പെടുന്ന ഊര്‍ജം എങ്ങനെ നിയന്ത്രണാധീനമാക്കാം എന്നതാണ് പ്രശ്നം. പ്ളാസ്മ വഴി (നോ: പ്ളാസ്മാ ഭൌതികം) 60 ദശലക്ഷം ഡിഗ്രി താപനില വരെ എത്തുവാന്‍ സാധിച്ചിട്ടുണ്ടെങ്കിലും സംയോജനം നടക്കുവാന്‍ വേണ്ടത്ര സമയം ഈ താപനില നിലനിര്‍ത്തുവാന്‍ കഴിഞ്ഞിട്ടില്ല. ഇക്കാരണത്താല്‍ ഒരു സംയോജന റിയാക്റ്റര്‍ ഇനിയും നിര്‍മിക്കേണ്ടിയിരിക്കുന്നു.

അണുകേന്ദ്ര-ഊര്‍ജം സമാധാന ആവശ്യങ്ങള്‍ക്ക്. ഖനനം, തോടുവെട്ടല്‍, വലിയ കുഴികുത്തല്‍ തുടങ്ങിയ പല ആവശ്യങ്ങള്‍ക്കും രാസസ്ഫോടക വസ്തുക്കള്‍ ധാരാളം ഉപയോഗിക്കുന്നുണ്ട്. ഈ ആവശ്യങ്ങള്‍ ലഘു അണുസ്ഫോടനങ്ങള്‍ നടത്തി സാധിക്കാവുന്നതാണ്. രാസസ്ഫോടകവുമായി താരതമ്യപ്പെടുത്തുമ്പോള്‍ ഊര്‍ജനഷ്ടം വളരെ കൂടുതലുണ്ടെങ്കിലും പ്രവര്‍ത്തനച്ചെലവ് പരിഗണിച്ചാല്‍ അണുസ്ഫോടനങ്ങള്‍ നടത്തുന്നതാണ് ലാഭകരം. അണുസ്ഫോടനങ്ങളുടെ മറ്റൊരു മുഖ്യപ്രയോജനം കൃത്രിമ ഭൂകമ്പങ്ങള്‍ സൃഷ്ടിച്ച് ഭൂകമ്പങ്ങളെപ്പറ്റിയുള്ള ഗവേഷണങ്ങള്‍ നടത്താമെന്നുള്ളതാണ്.

ഊര്‍ജവിഭവങ്ങള്‍ കുറഞ്ഞുവരുന്നതിനാല്‍ അണുകേന്ദ്ര-ഊര്‍ജം ഉത്പാദിപ്പിക്കാന്‍ ധാരാളം അണുശക്തിനിലയങ്ങള്‍ ലോകത്തില്‍ പല രാജ്യങ്ങളിലും സ്ഥാപിച്ചുവരുന്നു.

കപ്പലുകള്‍ ഓടിക്കാന്‍ അണുകേന്ദ്രശക്തി പ്രയോജനപ്പെടുന്നുണ്ട്. അണുശക്തികൊണ്ടു പ്രവര്‍ത്തിക്കുന്ന അന്തര്‍വാഹിനികള്‍ ഉണ്ട്. റോക്കറ്റുകള്‍ പ്രവര്‍ത്തിപ്പിക്കാനും അണുകേന്ദ്രശക്തി ഉപയോഗിച്ചുതുടങ്ങുമെന്നതില്‍ സംശയമില്ല. സമുദ്രജലം വാറ്റി ശുദ്ധമാക്കി ശുദ്ധജലക്ഷാമത്തെ നേരിടാന്‍ അണുകേന്ദ്ര-ഊര്‍ജം പ്രയോജനപ്പെടുത്തുന്നുണ്ട്. അമേരിക്കയില്‍ സമുദ്രജലശുദ്ധീകരണത്തിനുള്ള പരീക്ഷണപ്ളാന്റ് നിര്‍മിച്ചുകഴിഞ്ഞിരിക്കുന്നു. അതിന് ഇനിയും നിരവധി ഉപയോഗങ്ങള്‍ കണ്ടെത്തുവാന്‍ കഴിയും. നോ: അണു, അണുകേന്ദ്രം, അണുകേന്ദ്രവിജ്ഞാനീയം, അണുകേന്ദ്ര റിയാക്റ്റര്‍, അണുശബ്ദാവലി, ന്യൂക്ളിയര്‍ എന്‍ജിനീയറിങ്, പ്ളാസ്മാഭൌതികം

(പി.എം. മധുസൂദനന്‍)

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍