This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

ട്രാന്‍സിസ്റ്റര്‍

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(New page: ട്രാന്‍സിസ്റ്റര്‍ ഠൃമിശെീൃ ജര്‍മേനിയമോ സിലിക്കണോ പോലുള്ള അര്‍ധചാലക...)
(ട്രാന്‍സിസ്റ്റര്‍)
 
(ഇടക്കുള്ള 6 പതിപ്പുകളിലെ മാറ്റങ്ങള്‍ ഇവിടെ കാണിക്കുന്നില്ല.)
വരി 1: വരി 1:
-
ട്രാന്‍സിസ്റ്റര്‍
+
=ട്രാന്‍സിസ്റ്റര്‍=
-
ഠൃമിശെീൃ
+
Transistor
-
ജര്‍മേനിയമോ സിലിക്കണോ പോലുള്ള അര്‍ധചാലക പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിക്കുന്ന ഒരു ഇലക്ട്രോണിക് പ്രവര്‍ധക (മാുഹശള്യശിഴ) ഉപകരണം. അടിസ്ഥാനപരമായി ഒരു പ്രവര്‍ധക ഉപകരണമാണെങ്കിലും ദോലനം, സ്വിച്ചിങ്, നിയന്ത്രിത റെക്റ്റിഫിക്കേഷന്‍/ ദിഷ്ടകരണം, സ്വചാലിത നിയന്ത്രണം മുതലായവയ്ക്കും ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടാറ്ു.
+
 
-
1940 -ലാണ് ട്രാന്‍സിസ്റ്ററുകള്‍ ആദ്യമായി വിപണിയിലെത്തുന്നത്. ഇതോടെ റേഡിയൊ, ടെലിവിഷന്‍ സ്വീകരണികള്‍, ഡിജിറ്റല്‍ കംപ്യൂട്ടറുകള്‍ തുടങ്ങി മിക്ക ഇലക്ട്രോണിക് ഉപകരണങ്ങളിലും നിര്‍വാത (്മരൌൌാ) ട്യൂബിനുപകരമായി ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചു തുടങ്ങി. വലിപ്പക്കുറവ്, താഴ്ന്ന ശബ്ദ ഉത്പ്പാദനം, ഉയര്‍ന്ന ദക്ഷത എന്നിവയോടൊപ്പം പ്രവര്‍ത്തന വേളയില്‍ വളരെ ചെറിയ തോതില്‍ മാത്രമേ ചൂടാകാറുള്ളൂ എന്നതും ട്രാന്‍സിസ്റ്ററിന്റെ ഗുണമേന്മയാണ്.
+
ജര്‍മേനിയമോ സിലിക്കണോ പോലുള്ള അര്‍ധചാലക പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിക്കുന്ന ഒരു ഇലക്ട്രോണിക് പ്രവര്‍ധക (amplifying) ഉപകരണം. അടിസ്ഥാനപരമായി ഒരു പ്രവര്‍ധക ഉപകരണമാണെങ്കിലും ദോലനം, സ്വിച്ചിങ്, നിയന്ത്രിത റെക്റ്റിഫിക്കേഷന്‍/ ദിഷ്ടകരണം, സ്വചാലിത നിയന്ത്രണം മുതലായവയ്ക്കും ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടാറുണ്ട്.
-
ചരിത്രം. യു.സ്സിലെ ബെല്‍ ടെലിഫോണ്‍ ലാബറട്ടറിയിലെ വില്യം ഷോക്ലിയാണ് ട്രാന്‍സിസ്റ്ററിന്റെ ഉപജ്ഞാതാവായി കരുതപ്പെട്ടുവരുന്നത്. ബെല്‍ ലാബറട്ടറിയുടെ ശാസ്ത്രജ്ഞരായ ജോണ്‍ ബര്‍ഡീന്‍, വാള്‍ട്ടര്‍ എച്ച്. ബ്രറ്റൈയ്ന്‍ എന്നിവര്‍ 1948 ല്‍ ആദ്യമായി ഘനാവസ്ഥാ (ീഹശറ മെേലേ) പ്രവര്‍ധകമായ പോയിന്റ് - കോണ്‍ടാക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ കുപിടിച്ചു. പക്ഷേ ഇതിനു വേത്ര പ്രചാരം ലഭ്യമായില്ല. തുടര്‍ന്ന് 1951-ല്‍ അവിടത്തെ ശാസ്ത്രജ്ഞനായ വില്യം ഷോക്ലി ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററും നിര്‍മിച്ചു. പില്ക്കാലത്തെ എല്ലാ ഇനം ട്രാന്‍സിസ്റ്ററുകള്‍ക്കും അടിസ്ഥാന ഘടകമായി പ്രവര്‍ത്തിച്ചത് ഇതായിരുന്നു. ഈ കുപിടിത്തങ്ങളുടെ പേരില്‍ ഇവര്‍ മൂന്നു പേര്‍ക്കുമായി ഭൌതിക ശാസ്ത്രത്തിനുള്ള 1956 -ലെ നോബല്‍ പുരസ്ക്കാരവും നല്‍കപ്പെട്ടു.
+
[[Image:465transistor.png|200px|left|thumb|ദ്വിധ്രുവീയ npn    ട്രാന്‍സിസ്റ്ററിന്റെ ഘടനയും പരിപഥ ചിഹ്നവും 1. ഉത്സര്‍ജകം 2. ആധാരം 3. സംഗ്രാഹകം]]
-
ഇലക്ട്രോണിക് മേഖലയിലെ ഏറ്റവും മഹത്തായ കുപിടിത്തമായി വളരെ വേഗം ട്രാന്‍സിസ്റ്ററുകള്‍ അംഗീകരിക്കപ്പെട്ടു. 1970 -കളോടെ നിര്‍വാത ട്യൂബുകളെ ട്രാന്‍സിസ്റ്റര്‍ പ്രചാരത്തില്‍ മറികടക്കുകയും ചെയ്തു. അതോടെ ഇലക്ട്രോണിക് വ്യവസായത്തിലെ അടിസ്ഥാന ഉത്പന്നമായി ട്രാന്‍സിസ്റ്റര്‍ മാറി. ഇതോടൊപ്പം കംപ്യൂട്ടര്‍ മെമ്മറി, സ്വിച്ചിങ് പരിപഥങ്ങള്‍, മിനി കംപ്യൂട്ടറുകള്‍, മിനി കാല്‍ക്കുലേറ്ററുകള്‍, മെഡിക്കല്‍ ഇലക്ട്രോണിക് സംവിധാനങ്ങള്‍ എന്നിവയിലും അടിസ്ഥാന ഘടകമായി തീര്‍ന്ന ട്രാന്‍സിസ്റ്ററുകള്‍, ഇലക്ട്രോണിക് മേഖലയുടെ പരിധി വികസ്വരമാക്കുകയും ചെയ്തു.
+
 
-
1950-കളുടെ ആദ്യകാലങ്ങളില്‍ പരിപഥങ്ങളില്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രത്യേകം ഉപകരണങ്ങള്‍ (റശരൃെലലേ ലഹലാലി) ആയിട്ടാണ് ഘടിപ്പിച്ചിരുന്നത്. 1957 -ഓടെ സംഗ്രഥിത പരിപഥം അഥവാ ഇന്റഗ്രേറ്റഡ് സര്‍ക്ക്യൂട്ടുകള്‍ നിലവില്‍വന്നു. ഇതോടെ മറ്റു പരിപഥ ഘടകങ്ങളോടൊപ്പം ട്രാന്‍സിസ്റ്ററുകള്‍ അര്‍ധചാലക ചിപ്പുകളില്‍ സ്ഥാനം ലഭിച്ചു.
+
1940 -ലാണ് ട്രാന്‍സിസ്റ്ററുകള്‍ ആദ്യമായി വിപണിയിലെത്തുന്നത്. ഇതോടെ റേഡിയൊ, ടെലിവിഷന്‍ സ്വീകരണികള്‍, ഡിജിറ്റല്‍ കംപ്യൂട്ടറുകള്‍ തുടങ്ങി മിക്ക ഇലക്ട്രോണിക് ഉപകരണങ്ങളിലും നിര്‍വാത (vacuum) ട്യൂബിനുപകരമായി ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചു തുടങ്ങി. വലിപ്പക്കുറവ്, താഴ്ന്ന ശബ്ദ ഉത്പ്പാദനം, ഉയര്‍ന്ന ദക്ഷത എന്നിവയോടൊപ്പം പ്രവര്‍ത്തന വേളയില്‍ വളരെ ചെറിയ തോതില്‍ മാത്രമേ ചൂടാകാറുള്ളൂ എന്നതും ട്രാന്‍സിസ്റ്ററിന്റെ ഗുണമേന്മയാണ്.
-
പൊതുവേ അര്‍ധചാലകങ്ങളെ എന്‍-ഇനം, പി-ഇനം എന്ന് രായി തരംതിരിക്കാറ്ു. അര്‍ധചാലക പദാര്‍ഥത്തില്‍ കൂട്ടിക്കലര്‍ത്തുന്ന 'മാലിന്യ' പദാര്‍ഥമായ (ശാുൌൃശ്യ) 'ഡോണര്‍' അല്ലെങ്കില്‍  'അക്സെപ്റ്റെര്‍' ഏതാണ് എന്നതിനെ ആശ്രയിച്ചാണ് ഈ വിഭജനം നടത്തിയിട്ടുള്ളത്. ചാലകങ്ങളുടെ വൈദ്യുത സവിശേഷതകള്‍ ചെമ്പു പോലുള്ള ചാലക വസ്തുക്കളുടേതിനെ അപേക്ഷിച്ച് കുറഞ്ഞവയും, റബര്‍ തുടങ്ങിയ അചാലക പദാര്‍ഥങ്ങളുടേതിനെ അപേക്ഷിച്ച് ഉയര്‍ന്നവയുമായിരിക്കും. ഇവയിലെ വൈദ്യുത ചാലകതയേയും ധാരാ പ്രവാഹ രീതിയേയും സ്വാധീനിക്കുന്ന പ്രധാന ഘടകം അര്‍ധചാലകത്തിലേക്കു കടത്തിവിടുന്ന ഡോണര്‍ അല്ലെങ്കില്‍ അക്സെപ്റ്റെര്‍ ആണ്. ഡോപ്പിങ് എന്നാണ് ഈ പ്രക്രിയ അറിയപ്പെടുന്നത്. ഡോണര്‍ എന്ന ഒരിനം പദാര്‍ഥം അര്‍ധചാലക വസ്തുവിലേക്ക് ഡോപ്പിങ്ങിലൂടെ കടത്തി വിടുമ്പോള്‍ അര്‍ധചാലക പരലിന്റെ കണികാഘടനയില്‍ അത് അധിക ഇലക്ട്രോണുകള്‍ സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലകങ്ങളിലൂടെയുള്ള ധാരാ പ്രവാഹത്തിന്റെ ഹേതു ഈ അധിക ഇലക്ട്രോണുകളാണ്. അതായത് ന്യൂന അഥവാ നെഗറ്റീവ് (ഋണാത്മക) കണികകളാണ് ഇവയില്‍ ധാരാ പ്രവാഹം സൃഷ്ടിക്കുന്നത്. അതിനാല്‍ 'ിലഴമശ്േല' എന്ന വാക്കിലെ 'ി' അക്ഷരം ഉള്‍പ്പെടുത്തി ഇത്തരം അര്‍ധചാലക വസ്തുക്കളെ എന്‍-ഇനം (ി്യുല) അര്‍ധചാലകങ്ങളെന്ന് സൂചിപ്പിക്കുന്നു. ആന്റിമണി, ആര്‍സെനിക്, ഫോസ്ഫെറസ് മുതലായവയാണ് എന്‍-ഇനം നിര്‍മിക്കാനുപയോഗിക്കുന്ന ഡോണര്‍ പദാര്‍ഥങ്ങള്‍ (റീിമൃ ശാുൌൃശശേല).
+
 
-
അര്‍ധചാലക വസ്തുവിനെ അക്സെപ്റ്റെര്‍ പദാര്‍ഥം കാാെണ് ഡോപ്പ് ചെയ്യുന്നത് എങ്കില്‍, അര്‍ധചാലക പരല്‍ ഘടനയില്‍ ഇത് ഇലക്ട്രോണുകളുടെ അഭാവം അഥവാ ഹോളുകള്‍, സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലക വസ്തുവില്‍ ഹോളിന്റെ ധ്രുവതയെ സൂചിപ്പിക്കുന്ന 'ുീശെശ്േല' എന്ന വാക്കിനെ ഉള്‍പ്പെടുത്തി ഈ അര്‍ധചാലക വസ്തുക്കളെ പി-ഇനം  
+
'''ചരിത്രം'''. യു.സ്സിലെ ബെല്‍ ടെലിഫോണ്‍ ലാബറട്ടറിയിലെ വില്യം ഷോക്ലിയാണ് ട്രാന്‍സിസ്റ്ററിന്റെ ഉപജ്ഞാതാവായി കരുതപ്പെട്ടുവരുന്നത്. ബെല്‍ ലാബറട്ടറിയുടെ ശാസ്ത്രജ്ഞരായ ജോണ്‍ ബര്‍ഡീന്‍, വാള്‍ട്ടര്‍ എച്ച്. ബ്രറ്റൈയ് ന്‍എന്നിവര്‍ 1948 ല്‍ ആദ്യമായി ഘനാവസ്ഥാ (solid state) പ്രവര്‍ധകമായ പോയിന്റ് - കോണ്‍ടാക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ കുപിടിച്ചു. പക്ഷേ ഇതിനു വേത്ര പ്രചാരം ലഭ്യമായില്ല. തുടര്‍ന്ന് 1951-ല്‍ അവിടത്തെ ശാസ്ത്രജ്ഞനായ വില്യം ഷോക്ലി ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററും നിര്‍മിച്ചു. പില്ക്കാലത്തെ എല്ലാ ഇനം ട്രാന്‍സിസ്റ്ററുകള്‍ക്കും അടിസ്ഥാന ഘടകമായി പ്രവര്‍ത്തിച്ചത് ഇതായിരുന്നു. ഈ കുണ്ടുപിടിത്തങ്ങളുടെ പേരില്‍ ഇവര്‍ മൂന്നു പേര്‍ക്കുമായി ഭൗതിക ശാസ്ത്രത്തിനുള്ള 1956 -ലെ നോബല്‍ പുരസ്ക്കാരവും നല്‍കപ്പെട്ടു.
-
(ു്യുല) എന്ന് വിളിക്കുന്നു. അലൂമിനിയം, ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം മുതലായവയാണ് പി-ഇനം അര്‍ധചാലകത്തിലുപയോഗിക്കുന്ന അക്സെപ്റ്റെറുകള്‍.  
+
 
-
വര്‍ഗീകരണം. ട്രാന്‍സിസ്റ്ററുകളെ പ്രധാനമായി ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്റര്‍, ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ എന്നിങ്ങനെ രിനങ്ങളായി വര്‍ഗീകരിക്കാം. ഇവയോരോന്നിലും വീും
+
ഇലക്ട്രോണിക് മേഖലയിലെ ഏറ്റവും മഹത്തായ കുണ്ടുപിടിത്തമായി വളരെ വേഗം ട്രാന്‍സിസ്റ്ററുകള്‍ അംഗീകരിക്കപ്പെട്ടു. 1970 -കളോടെ നിര്‍വാത ട്യൂബുകളെ ട്രാന്‍സിസ്റ്റര്‍ പ്രചാരത്തില്‍ മറികടക്കുകയും ചെയ്തു. അതോടെ ഇലക്ട്രോണിക് വ്യവസായത്തിലെ അടിസ്ഥാന ഉത്പന്നമായി ട്രാന്‍സിസ്റ്റര്‍ മാറി. ഇതോടൊപ്പം കംപ്യൂട്ടര്‍ മെമ്മറി, സ്വിച്ചിങ് പരിപഥങ്ങള്‍, മിനി കംപ്യൂട്ടറുകള്‍, മിനി കാല്‍ക്കുലേറ്ററുകള്‍, മെഡിക്കല്‍ ഇലക്ട്രോണിക് സംവിധാനങ്ങള്‍ എന്നിവയിലും അടിസ്ഥാന ഘടകമായി തീര്‍ന്ന ട്രാന്‍സിസ്റ്ററുകള്‍, ഇലക്ട്രോണിക് മേഖലയുടെ പരിധി വികസ്വരമാക്കുകയും ചെയ്തു.
-
ഉപ വിഭാഗങ്ങള്‍ ഉ്. നിവേശ വൈദ്യുത ധാരയുടെ പ്രവര്‍ധനമാണ് (മാുഹശളശരമശീിേ) ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകളില്‍  
+
 
-
നടക്കുന്നത്. അതായത് നിര്‍ഗമത്തില്‍ ലഭിക്കുന്ന ധാരയുടെ അളവ് നിവേശത്തില്‍ ഉള്ളതിനെ അപേക്ഷിച്ച് വളരെ ഉയര്‍ന്നതായിരിക്കും. വൈദ്യുത ധാരയുടെ തീവ്രതയ്ക്കനുസൃത
+
1950-കളുടെ ആദ്യകാലങ്ങളില്‍ പരിപഥങ്ങളില്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രത്യേകം ഉപകരണങ്ങള്‍ (discrete elements) ആയിട്ടാണ് ഘടിപ്പിച്ചിരുന്നത്. 1957 -ഓടെ സംഗ്രഥിത പരിപഥം അഥവാ ഇന്റഗ്രേറ്റഡ് സര്‍ക്ക്യൂട്ടുകള്‍ നിലവില്‍വന്നു. ഇതോടെ മറ്റു പരിപഥ ഘടകങ്ങളോടൊപ്പം ട്രാന്‍സിസ്റ്ററുകള്‍ അര്‍ധചാലക ചിപ്പുകളില്‍ സ്ഥാനം ലഭിച്ചു.
-
മായി ധാരയുടെ ശക്തിയും ഉയര്‍ന്നതായതിനാല്‍ ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ധാരാ പ്രവര്‍ധകങ്ങള്‍ എന്നതോടൊപ്പം  
+
 
-
ശക്തി പ്രവര്‍ധകങ്ങള്‍ (ുീംലൃ മാുഹശളശലൃ) കൂടിയാണ്. ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററുകളില്‍ നിവേശ വോള്‍ട്ടതയെ അപേക്ഷിച്ച് വലിയ മടങ്ങ് നിര്‍ഗമ വോള്‍ട്ടതയാണ് ലഭിക്കുന്നത്. ഇതിനാല്‍ ഇവയെ വോള്‍ട്ടത പ്രവധകങ്ങള്‍ എന്ന് സൂചിപ്പിക്കാറ്ു. പ്രവര്‍ത്തനങ്ങളില്‍ നിര്‍വാത ട്യൂബുകളുമായി കൂടുതല്‍ സാദ്യശ്യം പ്രകടിപ്പിക്കുന്നതും ഇവയാണ്. വോള്‍ട്ടതയ്ക്കാനുപാതികമായി ശക്തിയും കൂടുന്നതിനാല്‍ ഇവയും ശക്തി പ്രവര്‍ധകങ്ങള്‍ തന്നെ.
+
പൊതുവേ അര്‍ധചാലകങ്ങളെ എന്‍-ഇനം, പി-ഇനം എന്ന് രായി തരംതിരിക്കാറുണ്ട്. അര്‍ധചാലക പദാര്‍ഥത്തില്‍ കൂട്ടിക്കലര്‍ത്തുന്ന 'മാലിന്യ' പദാര്‍ഥമായ (impurity) 'ഡോണര്‍' അല്ലെങ്കില്‍  'അക്സെപ്റ്റെര്‍' ഏതാണ് എന്നതിനെ ആശ്രയിച്ചാണ് ഈ വിഭജനം നടത്തിയിട്ടുള്ളത്. ചാലകങ്ങളുടെ വൈദ്യുത സവിശേഷതകള്‍ ചെമ്പു പോലുള്ള ചാലക വസ്തുക്കളുടേതിനെ അപേക്ഷിച്ച് കുറഞ്ഞവയും, റബര്‍ തുടങ്ങിയ അചാലക പദാര്‍ഥങ്ങളുടേതിനെ അപേക്ഷിച്ച് ഉയര്‍ന്നവയുമായിരിക്കും. ഇവയിലെ വൈദ്യുത ചാലകതയേയും ധാരാ പ്രവാഹ രീതിയേയും സ്വാധീനിക്കുന്ന പ്രധാന ഘടകം അര്‍ധചാലകത്തിലേക്കു കടത്തിവിടുന്ന ഡോണര്‍ അല്ലെങ്കില്‍ അക്സെപ്റ്റെര്‍ ആണ്. ഡോപ്പിങ് എന്നാണ് ഈ പ്രക്രിയ അറിയപ്പെടുന്നത്. ഡോണര്‍ എന്ന ഒരിനം പദാര്‍ഥം അര്‍ധചാലക വസ്തുവിലേക്ക് ഡോപ്പിങ്ങിലൂടെ കടത്തി വിടുമ്പോള്‍ അര്‍ധചാലക പരലിന്റെ കണികാഘടനയില്‍ അത് അധിക ഇലക്ട്രോണുകള്‍ സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലകങ്ങളിലൂടെയുള്ള ധാരാ പ്രവാഹത്തിന്റെ ഹേതു ഈ അധിക ഇലക്ട്രോണുകളാണ്. അതായത് ന്യൂന അഥവാ നെഗറ്റീവ് (ഋണാത്മക) കണികകളാണ് ഇവയില്‍ ധാരാ പ്രവാഹം സൃഷ്ടിക്കുന്നത്. അതിനാല്‍ 'negative' എന്ന വാക്കിലെ 'n' അക്ഷരം ഉള്‍പ്പെടുത്തി ഇത്തരം അര്‍ധചാലക വസ്തുക്കളെ എന്‍-ഇനം (n-type) അര്‍ധചാലകങ്ങളെന്ന് സൂചിപ്പിക്കുന്നു. ആന്റിമണി, ആര്‍സെനിക്, ഫോസ്ഫെറസ് മുതലായവയാണ് എന്‍-ഇനം നിര്‍മിക്കാനുപയോഗിക്കുന്ന ഡോണര്‍ പദാര്‍ഥങ്ങള്‍ (donar impurities).
-
രു ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉള്‍ക്കൊള്ളുന്നതാണ് ബൈപോളാര്‍ - ട്രാന്‍സിസ്റ്റര്‍. ഒരു പി-ദ്വിധ്രുവീയ ഇനം അര്‍ധചാലക ദണ്ഡ് എടുത്ത് അതിന്റെ രു വശത്തുമായി എന്‍-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് നിര്‍മിക്കുന്നവയാണ് ിുി ട്രാന്‍സിസ്റ്റര്‍; മറിച്ച്  എന്‍-ഇനം അര്‍ധചാലക ദണ്ഡിന്റെ രഗ്രങ്ങളിലുമായി പി-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് തയ്യാറാക്കുന്നവയാണ് ുിു ട്രാന്‍സിസ്റ്റര്‍. ഇത്തരത്തില്‍ ഒരു ട്രാന്‍സിസ്റ്ററില്‍ മൂന്നു പാളികള്‍ ഉാകും- ,ി,പാളികളോ, ി,,ി
+
 
-
പാളികളോ; ഇതിനനുസൃതമായി അവയെ ുിു, ിുി ട്രാന്‍സിസ്റ്ററുകള്‍ എന്ന് സൂചിപ്പിക്കുന്നു. ട്രാന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉല്‍സര്‍ജകം (ലാശലൃേേ) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (രീഹഹലരീൃ) എന്നും ഇവയ്ക്കിടയിലുള്ള കനം കുറഞ്ഞ മധ്യ പാളിയെ ആധാരം അഥവാ മൂലം (യമലെ) എന്നും സൂചിപ്പിക്കുന്നു.
+
അര്‍ധചാലക വസ്തുവിനെ അക്സെപ്റ്റെര്‍ പദാര്‍ഥം കൊണ്ടാണ് ഡോപ്പ് ചെയ്യുന്നത് എങ്കില്‍, അര്‍ധചാലക പരല്‍ ഘടനയില്‍ ഇത് ഇലക്ട്രോണുകളുടെ അഭാവം അഥവാ ഹോളുകള്‍, സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലക വസ്തുവില്‍ ഹോളിന്റെ ധ്രുവതയെ സൂചിപ്പിക്കുന്ന 'positive' എന്ന വാക്കിനെ p ഉള്‍പ്പെടുത്തി ഈ അര്‍ധചാലക വസ്തുക്കളെ പി-ഇനം (p-type) എന്ന് വിളിക്കുന്നു. അലൂമിനിയം, ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം മുതലായവയാണ് പി-ഇനം അര്‍ധചാലകത്തിലുപയോഗിക്കുന്ന അക്സെപ്റ്റെറുകള്‍.  
-
ട്രാന്‍സിസ്റ്ററുകളെ പരിപഥത്തില്‍ മൂന്നു രീതിയില്‍ ഘടിപ്പിക്കാം. ഉല്‍സര്‍ജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയില്‍ ഒന്നിനെ നിവേശ പരിപഥത്തിലും നിര്‍ഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയില്‍ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ് യഥാക്രമം പൊതു ഉല്‍സര്‍ജകം (രീാാീി ലാശലൃേേ), പൊതു സംഗ്രാഹകം (രീാാീി രീഹഹലരീൃ), പൊതു ആധാരം (രീാാീി യമലെ) പരിപഥ രീതികള്‍.
+
 
-
പ്രവര്‍ത്തന രീതി. ട്രാന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രു രീതിയില്‍ ഘടിപ്പിക്കാം. ഒരു ജങ്ഷനിലെ ി പാളി ധനാത്മകവും തൊട്ടടുത്ത പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തില്‍ ബാഹ്യ പരിപഥം രൂപപ്പെടുന്നതാണ് ഒരു രീതി. ഇത്തരം അവസ്ഥയില്‍ ി,പാളികള്‍ക്കിടയില്‍ അനുഭവപ്പെടുന്ന ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാ പ്രവാഹം മാത്രമേ ഇത്തരത്തില്‍ ജങ്ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉല്‍ക്രമ ബയ്സ് (ൃല്ലൃലെ യമശ) എന്നു സൂചിപ്പിക്കുന്നു. ഇതിനുപകരമായി ി തലം ഋണാത്മകവും തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ് ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കില്‍ ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയര്‍ന്ന തോതിലുള്ള ധാരാ പ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയ്സ് (ളീൃംമൃറ യമശ) എന്ന് സൂചിപ്പിക്കുന്നു.  
+
'''വര്‍ഗീകരണം.''' ട്രാന്‍സിസ്റ്ററുകളെ പ്രധാനമായി ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്റര്‍, ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ എന്നിങ്ങനെ രണ്ടിനങ്ങളായി വര്‍ഗീകരിക്കാം. ഇവയോരോന്നിലും വീണ്ടും
-
ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററിനെ ജങ്ഷന്‍ ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (ഖഎഋഠ) എന്നും ഇന്‍സുലേറ്റെഡ്- ഗേറ്റ് ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (കഏഎഋഠ) എന്നും രായി തരം തിരിക്കാം.
+
ഉപ വിഭാഗങ്ങള്‍ ഉണ്ട്. നിവേശ വൈദ്യുത ധാരയുടെ പ്രവര്‍ധനമാണ് (amplification) ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകളില്‍ നടക്കുന്നത്. അതായത് നിര്‍ഗമത്തില്‍ ലഭിക്കുന്ന ധാരയുടെ അളവ് നിവേശത്തില്‍ ഉള്ളതിനെ അപേക്ഷിച്ച് വളരെ ഉയര്‍ന്നതായിരിക്കും. വൈദ്യുത ധാരയുടെ തീവ്രതയ്ക്കനുസൃത
-
- ഇനം അല്ലെങ്കില്‍ ി- ഇനം സിലിക്കോണ്‍ ദണ്ഡില്‍ മധ്യഭാഗത്തായി പരസ്പരം അഭിമുഖമായി വരത്തക്ക രീതിയില്‍ യഥാക്രമം ി അഥവാ പാളികള്‍ ഡോപ്പിങ്ങിലൂടെ സൃഷ്ടിച്ചാണ് ഖഎഋഠ നിര്‍മിക്കുന്നത്. പരിപഥങ്ങളില്‍ വളരെ കൂടിയ ഇന്‍പുട്ട് പ്രതിരോധകത പ്രകടിപ്പിക്കുന്ന ഒന്നാണ് ഖഎഋഠ.
+
മായി ധാരയുടെ ശക്തിയും ഉയര്‍ന്നതായതിനാല്‍ ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ധാരാ പ്രവര്‍ധകങ്ങള്‍ എന്നതോടൊപ്പം ശക്തി പ്രവര്‍ധകങ്ങള്‍ (power amplifiers) കൂടിയാണ്. ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററുകളില്‍ നിവേശ വോള്‍ട്ടതയെ അപേക്ഷിച്ച് വലിയ മടങ്ങ് നിര്‍ഗമ വോള്‍ട്ടതയാണ് ലഭിക്കുന്നത്. ഇതിനാല്‍ ഇവയെ വോള്‍ട്ടത പ്രവധകങ്ങള്‍ എന്ന് സൂചിപ്പിക്കാറുണ്ട്. പ്രവര്‍ത്തനങ്ങളില്‍ നിര്‍വാത ട്യൂബുകളുമായി കൂടുതല്‍ സാദ്യശ്യം പ്രകടിപ്പിക്കുന്നതും ഇവയാണ്. വോള്‍ട്ടതയ്ക്കാനുപാതികമായി ശക്തിയും കൂടുന്നതിനാല്‍ ഇവയും ശക്തി പ്രവര്‍ധകങ്ങള്‍ തന്നെ.
-
ഖഎഋഠ യില്‍ ര് പിഎന്‍ ജങ്ഷനുകള്‍ ചേര്‍ന്ന് രൂപപ്പെടുത്തുന്നതാണ് ഗേറ്റ്. പക്ഷേ, ഇതിനു പകരം, ട്രാന്‍സിസ്റ്ററിന്റെ ഇതര ഭാഗങ്ങളില്‍ നിന്ന് രോധനം ചെയ്യപ്പെട്ട  (ശിൌഹമലേറ)തരത്തിലുള്ള ഒരു ലോഹ ഇലക്ട്രോഡിനെ, ഗേറ്റായി പ്രവര്‍ത്തിക്കുന്ന തരത്തില്‍ നിര്‍മിക്കപ്പെടുന്നവയാണ് കഏഎഋഠ. ഖഎഋഠ യെ അപേക്ഷിച്ച് വളരെ കൂടിയതാണ് ഇതിന്റെ നിവേശ പ്രതിരോധകത.  
+
 
-
സുതാര്യ ട്രാന്‍സിസ്റ്റര്‍. ഓറിഗണ്‍ സ്റ്റേറ്റ് സര്‍വകലാശാലയിലെ റാന്‍ഡി ഹൊഫ്മാന്‍, ബെന്‍നോറിസ് എന്നീ ശാസ്ത്രജ്ഞന്മാരുടെ ഗവേഷണ ഫലമായി വികസിപ്പിച്ചെടുത്ത ഒരു നൂതന ട്രാന്‍സിസ്റ്ററാണിത്. ഉപഭോഗ ഇലക്ട്രോണിക്സ്, ഗതാഗതം, വ്യവസായം, സൈനികം തുടങ്ങിയ രംഗങ്ങളില്‍ പരിവര്‍ത്തനങ്ങള്‍ സൃഷ്ടിക്കാന്‍ പര്യാപ്തമായ കുപിടിത്തമായിട്ടാണ് ശാസ്ത്രലോകം ഇതിനെ വിലയിരുത്തുന്നത്. താഴ്ന്ന താപനിലകളില്‍ കനം കുറഞ്ഞ പാളി രൂപത്തില്‍ (വേശി ളശഹാ) നിക്ഷേപിക്കാനാവുന്നതും പരിസ്ഥിതിക്കു ദോഷം വരുത്താത്തതുമായ സിങ്ക് ഓക്സൈഡ് പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിച്ച എന്‍-ഇനം ട്രാന്‍സിസ്റ്ററായ ഇത് സുതാര്യത ഉള്ളതു കൂടിയാണ്. ഇവ  
+
രണ്ടു ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉള്‍ക്കൊള്ളുന്നതാണ് ബൈപോളാര്‍ - ട്രാന്‍സിസ്റ്റര്‍. ഒരു പി-ദ്വിധ്രുവീയ ഇനം അര്‍ധചാലക ദണ്ഡ് എടുത്ത് അതിന്റെ രണ്ടു വശത്തുമായി എന്‍-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് നിര്‍മിക്കുന്നവയാണ് npn ട്രാന്‍സിസ്റ്റര്‍; മറിച്ച്  എന്‍-ഇനം അര്‍ധചാലക ദണ്ഡിന്റെ രണ്ടഗ്രങ്ങളിലുമായി പി-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് തയ്യാറാക്കുന്നവയാണ് pnp ട്രാന്‍സിസ്റ്റര്‍. ഇത്തരത്തില്‍ ഒരു ട്രാന്‍സിസ്റ്ററില്‍ മൂന്നു പാളികള്‍ ഉണ്ടാകും-p,n,p പാളികളോ,n,p,n
-
ഉപയുക്തമായി നിര്‍മിക്കുന്ന ലിക്വിഡ് ക്രിസ്റ്റല്‍ ഡിസ്പ്ളേകളില്‍ അക്ഷരങ്ങളും മറ്റും കൂടുതല്‍ വ്യക്തതയോടും തെളിച്ചത്തോടും കൂടി പ്രദര്‍ശിപ്പിക്കാനാകും. ജനാലയുടെ കണ്ണാടിപ്പാളികള്‍, കാറിന്റെ വിന്‍ഡ്സ്ക്രീന്‍ എന്നിവയുടെ ഉള്ളറകളില്‍ ഇലക്ട്രോണിക് ഉപകരണങ്ങള്‍ നിര്‍മിച്ചു ചേര്‍ക്കുന്നതിനും സുതാര്യ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടുത്താവുതാണ്. ഇതിനു  
+
പാളികളോ; ഇതിനനുസൃതമായി അവയെpnp,npn ട്രാന്‍സിസ്റ്ററുകള്‍ എന്ന് സൂചിപ്പിക്കുന്നു. ട്രാന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉല്‍സര്‍ജകം (emitter) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (collector) എന്നും ഇവയ്ക്കിടയിലുള്ള കനം കുറഞ്ഞ മധ്യ പാളിയെ ആധാരം അഥവാ മൂലം (base) എന്നും സൂചിപ്പിക്കുന്നു.
 +
 
 +
ട്രാന്‍സിസ്റ്ററുകളെ പരിപഥത്തില്‍ മൂന്നു രീതിയില്‍ ഘടിപ്പിക്കാം. ഉല്‍സര്‍ജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയില്‍ ഒന്നിനെ നിവേശ പരിപഥത്തിലും നിര്‍ഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയില്‍ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ് യഥാക്രമം പൊതു ഉല്‍സര്‍ജകം (common emitter), പൊതു സംഗ്രാഹകം (common collector), പൊതു ആധാരം (common base) പരിപഥ രീതികള്‍.
 +
 
 +
'''പ്രവര്‍ത്തന രീതി'''. ട്രാന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രണ്ടു രീതിയില്‍ ഘടിപ്പിക്കാം. ഒരു ജങ്ഷനിലെ n പാളി ധനാത്മകവും തൊട്ടടുത്ത p പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തില്‍ ബാഹ്യ പരിപഥം രൂപപ്പെടുന്നതാണ് ഒരു രീതി. ഇത്തരം അവസ്ഥയില്‍ n,p പാളികള്‍ക്കിടയില്‍ അനുഭവപ്പെടുന്ന ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാ പ്രവാഹം മാത്രമേ ഇത്തരത്തില്‍ ജങ്ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉല്‍ക്രമ ബയ്സ് (reverse bais) എന്നു സൂചിപ്പിക്കുന്നു. ഇതിനുപകരമായി n തലം ഋണാത്മകവും p തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ് ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കില്‍ ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയര്‍ന്ന തോതിലുള്ള ധാരാ പ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയ്സ് (forward bais) എന്ന് സൂചിപ്പിക്കുന്നു.  
 +
 
 +
ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററിനെ ജങ്ഷന്‍ ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (JPET) എന്നും ഇന്‍സുലേറ്റെഡ്- ഗേറ്റ് ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (IGFET) എന്നും രണ്ടായി തരം തിരിക്കാം.
 +
p- ഇനം അല്ലെങ്കില്‍ n- ഇനം സിലിക്കോണ്‍ ദണ്ഡില്‍ മധ്യഭാഗത്തായി പരസ്പരം അഭിമുഖമായി വരത്തക്ക രീതിയില്‍ യഥാക്രമം n അഥവാ p പാളികള്‍ ഡോപ്പിങ്ങിലൂടെ സൃഷ്ടിച്ചാണ് JFET നിര്‍മിക്കുന്നത്. പരിപഥങ്ങളില്‍ വളരെ കൂടിയ ഇന്‍പുട്ട് പ്രതിരോധകത പ്രകടിപ്പിക്കുന്ന ഒന്നാണ് JFET.
 +
 
 +
JFET യില്‍ രണ്ട് പിഎന്‍ ജങ്ഷനുകള്‍ ചേര്‍ന്ന് രൂപപ്പെടുത്തുന്നതാണ് ഗേറ്റ്. പക്ഷേ, ഇതിനു പകരം, ട്രാന്‍സിസ്റ്ററിന്റെ ഇതര ഭാഗങ്ങളില്‍ നിന്ന് രോധനം ചെയ്യപ്പെട്ട  (insulated)തരത്തിലുള്ള ഒരു ലോഹ ഇലക്ട്രോഡിനെ, ഗേറ്റായി പ്രവര്‍ത്തിക്കുന്ന തരത്തില്‍ നിര്‍മിക്കപ്പെടുന്നവയാണ് IGFET. JFET യെ അപേക്ഷിച്ച് വളരെ കൂടിയതാണ് ഇതിന്റെ നിവേശ പ്രതിരോധകത.  
 +
 
 +
'''സുതാര്യ ട്രാന്‍സിസ്റ്റര്‍.''' ഓറിഗണ്‍ സ്റ്റേറ്റ് സര്‍വകലാശാലയിലെ റാന്‍ഡി ഹൊഫ്മാന്‍, ബെന്‍നോറിസ് എന്നീ ശാസ്ത്രജ്ഞന്മാരുടെ ഗവേഷണ ഫലമായി വികസിപ്പിച്ചെടുത്ത ഒരു നൂതന ട്രാന്‍സിസ്റ്ററാണിത്. ഉപഭോഗ ഇലക്ട്രോണിക്സ്, ഗതാഗതം, വ്യവസായം, സൈനികം തുടങ്ങിയ രംഗങ്ങളില്‍ പരിവര്‍ത്തനങ്ങള്‍ സൃഷ്ടിക്കാന്‍ പര്യാപ്തമായ കണ്ടുപിടിത്തമായിട്ടാണ് ശാസ്ത്രലോകം ഇതിനെ വിലയിരുത്തുന്നത്. താഴ്ന്ന താപനിലകളില്‍ കനം കുറഞ്ഞ പാളി രൂപത്തില്‍ (thin films) നിക്ഷേപിക്കാനാവുന്നതും പരിസ്ഥിതിക്കു ദോഷം വരുത്താത്തതുമായ സിങ്ക് ഓക്സൈഡ് പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിച്ച എന്‍-ഇനം ട്രാന്‍സിസ്റ്ററായ ഇത് സുതാര്യത ഉള്ളതു കൂടിയാണ്. ഇവ ഉപയുക്തമായി നിര്‍മിക്കുന്ന ലിക്വിഡ് ക്രിസ്റ്റല്‍ ഡിസ് പ്ലേകളില്‍ അക്ഷരങ്ങളും മറ്റും കൂടുതല്‍ വ്യക്തതയോടും തെളിച്ചത്തോടും കൂടി പ്രദര്‍ശിപ്പിക്കാനാകും. ജനാലയുടെ കണ്ണാടിപ്പാളികള്‍, കാറിന്റെ വിന്‍ഡ്സ്ക്രീന്‍ എന്നിവയുടെ ഉള്ളറകളില്‍ ഇലക്ട്രോണിക് ഉപകരണങ്ങള്‍ നിര്‍മിച്ചു ചേര്‍ക്കുന്നതിനും സുതാര്യ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടുത്താവുതാണ്. ഇതിനു  
പുറമേ ദൃശ്യ വിവരങ്ങളുടെ പ്രേഷണവും ഇവ സുസാധ്യമാക്കുന്നു.
പുറമേ ദൃശ്യ വിവരങ്ങളുടെ പ്രേഷണവും ഇവ സുസാധ്യമാക്കുന്നു.

Current revision as of 05:27, 12 ജനുവരി 2009

ട്രാന്‍സിസ്റ്റര്‍

Transistor

ജര്‍മേനിയമോ സിലിക്കണോ പോലുള്ള അര്‍ധചാലക പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിക്കുന്ന ഒരു ഇലക്ട്രോണിക് പ്രവര്‍ധക (amplifying) ഉപകരണം. അടിസ്ഥാനപരമായി ഒരു പ്രവര്‍ധക ഉപകരണമാണെങ്കിലും ദോലനം, സ്വിച്ചിങ്, നിയന്ത്രിത റെക്റ്റിഫിക്കേഷന്‍/ ദിഷ്ടകരണം, സ്വചാലിത നിയന്ത്രണം മുതലായവയ്ക്കും ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടാറുണ്ട്.

ദ്വിധ്രുവീയ npn ട്രാന്‍സിസ്റ്ററിന്റെ ഘടനയും പരിപഥ ചിഹ്നവും 1. ഉത്സര്‍ജകം 2. ആധാരം 3. സംഗ്രാഹകം

1940 -ലാണ് ട്രാന്‍സിസ്റ്ററുകള്‍ ആദ്യമായി വിപണിയിലെത്തുന്നത്. ഇതോടെ റേഡിയൊ, ടെലിവിഷന്‍ സ്വീകരണികള്‍, ഡിജിറ്റല്‍ കംപ്യൂട്ടറുകള്‍ തുടങ്ങി മിക്ക ഇലക്ട്രോണിക് ഉപകരണങ്ങളിലും നിര്‍വാത (vacuum) ട്യൂബിനുപകരമായി ട്രാന്‍സിസ്റ്ററുകള്‍ ഉപയോഗിച്ചു തുടങ്ങി. വലിപ്പക്കുറവ്, താഴ്ന്ന ശബ്ദ ഉത്പ്പാദനം, ഉയര്‍ന്ന ദക്ഷത എന്നിവയോടൊപ്പം പ്രവര്‍ത്തന വേളയില്‍ വളരെ ചെറിയ തോതില്‍ മാത്രമേ ചൂടാകാറുള്ളൂ എന്നതും ട്രാന്‍സിസ്റ്ററിന്റെ ഗുണമേന്മയാണ്.

ചരിത്രം. യു.സ്സിലെ ബെല്‍ ടെലിഫോണ്‍ ലാബറട്ടറിയിലെ വില്യം ഷോക്ലിയാണ് ട്രാന്‍സിസ്റ്ററിന്റെ ഉപജ്ഞാതാവായി കരുതപ്പെട്ടുവരുന്നത്. ബെല്‍ ലാബറട്ടറിയുടെ ശാസ്ത്രജ്ഞരായ ജോണ്‍ ബര്‍ഡീന്‍, വാള്‍ട്ടര്‍ എച്ച്. ബ്രറ്റൈയ് ന്‍എന്നിവര്‍ 1948 ല്‍ ആദ്യമായി ഘനാവസ്ഥാ (solid state) പ്രവര്‍ധകമായ പോയിന്റ് - കോണ്‍ടാക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ കുപിടിച്ചു. പക്ഷേ ഇതിനു വേത്ര പ്രചാരം ലഭ്യമായില്ല. തുടര്‍ന്ന് 1951-ല്‍ അവിടത്തെ ശാസ്ത്രജ്ഞനായ വില്യം ഷോക്ലി ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററും നിര്‍മിച്ചു. പില്ക്കാലത്തെ എല്ലാ ഇനം ട്രാന്‍സിസ്റ്ററുകള്‍ക്കും അടിസ്ഥാന ഘടകമായി പ്രവര്‍ത്തിച്ചത് ഇതായിരുന്നു. ഈ കുണ്ടുപിടിത്തങ്ങളുടെ പേരില്‍ ഇവര്‍ മൂന്നു പേര്‍ക്കുമായി ഭൗതിക ശാസ്ത്രത്തിനുള്ള 1956 -ലെ നോബല്‍ പുരസ്ക്കാരവും നല്‍കപ്പെട്ടു.

ഇലക്ട്രോണിക് മേഖലയിലെ ഏറ്റവും മഹത്തായ കുണ്ടുപിടിത്തമായി വളരെ വേഗം ട്രാന്‍സിസ്റ്ററുകള്‍ അംഗീകരിക്കപ്പെട്ടു. 1970 -കളോടെ നിര്‍വാത ട്യൂബുകളെ ട്രാന്‍സിസ്റ്റര്‍ പ്രചാരത്തില്‍ മറികടക്കുകയും ചെയ്തു. അതോടെ ഇലക്ട്രോണിക് വ്യവസായത്തിലെ അടിസ്ഥാന ഉത്പന്നമായി ട്രാന്‍സിസ്റ്റര്‍ മാറി. ഇതോടൊപ്പം കംപ്യൂട്ടര്‍ മെമ്മറി, സ്വിച്ചിങ് പരിപഥങ്ങള്‍, മിനി കംപ്യൂട്ടറുകള്‍, മിനി കാല്‍ക്കുലേറ്ററുകള്‍, മെഡിക്കല്‍ ഇലക്ട്രോണിക് സംവിധാനങ്ങള്‍ എന്നിവയിലും അടിസ്ഥാന ഘടകമായി തീര്‍ന്ന ട്രാന്‍സിസ്റ്ററുകള്‍, ഇലക്ട്രോണിക് മേഖലയുടെ പരിധി വികസ്വരമാക്കുകയും ചെയ്തു.

1950-കളുടെ ആദ്യകാലങ്ങളില്‍ പരിപഥങ്ങളില്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രത്യേകം ഉപകരണങ്ങള്‍ (discrete elements) ആയിട്ടാണ് ഘടിപ്പിച്ചിരുന്നത്. 1957 -ഓടെ സംഗ്രഥിത പരിപഥം അഥവാ ഇന്റഗ്രേറ്റഡ് സര്‍ക്ക്യൂട്ടുകള്‍ നിലവില്‍വന്നു. ഇതോടെ മറ്റു പരിപഥ ഘടകങ്ങളോടൊപ്പം ട്രാന്‍സിസ്റ്ററുകള്‍ അര്‍ധചാലക ചിപ്പുകളില്‍ സ്ഥാനം ലഭിച്ചു.

പൊതുവേ അര്‍ധചാലകങ്ങളെ എന്‍-ഇനം, പി-ഇനം എന്ന് രായി തരംതിരിക്കാറുണ്ട്. അര്‍ധചാലക പദാര്‍ഥത്തില്‍ കൂട്ടിക്കലര്‍ത്തുന്ന 'മാലിന്യ' പദാര്‍ഥമായ (impurity) 'ഡോണര്‍' അല്ലെങ്കില്‍ 'അക്സെപ്റ്റെര്‍' ഏതാണ് എന്നതിനെ ആശ്രയിച്ചാണ് ഈ വിഭജനം നടത്തിയിട്ടുള്ളത്. ചാലകങ്ങളുടെ വൈദ്യുത സവിശേഷതകള്‍ ചെമ്പു പോലുള്ള ചാലക വസ്തുക്കളുടേതിനെ അപേക്ഷിച്ച് കുറഞ്ഞവയും, റബര്‍ തുടങ്ങിയ അചാലക പദാര്‍ഥങ്ങളുടേതിനെ അപേക്ഷിച്ച് ഉയര്‍ന്നവയുമായിരിക്കും. ഇവയിലെ വൈദ്യുത ചാലകതയേയും ധാരാ പ്രവാഹ രീതിയേയും സ്വാധീനിക്കുന്ന പ്രധാന ഘടകം അര്‍ധചാലകത്തിലേക്കു കടത്തിവിടുന്ന ഡോണര്‍ അല്ലെങ്കില്‍ അക്സെപ്റ്റെര്‍ ആണ്. ഡോപ്പിങ് എന്നാണ് ഈ പ്രക്രിയ അറിയപ്പെടുന്നത്. ഡോണര്‍ എന്ന ഒരിനം പദാര്‍ഥം അര്‍ധചാലക വസ്തുവിലേക്ക് ഡോപ്പിങ്ങിലൂടെ കടത്തി വിടുമ്പോള്‍ അര്‍ധചാലക പരലിന്റെ കണികാഘടനയില്‍ അത് അധിക ഇലക്ട്രോണുകള്‍ സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലകങ്ങളിലൂടെയുള്ള ധാരാ പ്രവാഹത്തിന്റെ ഹേതു ഈ അധിക ഇലക്ട്രോണുകളാണ്. അതായത് ന്യൂന അഥവാ നെഗറ്റീവ് (ഋണാത്മക) കണികകളാണ് ഇവയില്‍ ധാരാ പ്രവാഹം സൃഷ്ടിക്കുന്നത്. അതിനാല്‍ 'negative' എന്ന വാക്കിലെ 'n' അക്ഷരം ഉള്‍പ്പെടുത്തി ഇത്തരം അര്‍ധചാലക വസ്തുക്കളെ എന്‍-ഇനം (n-type) അര്‍ധചാലകങ്ങളെന്ന് സൂചിപ്പിക്കുന്നു. ആന്റിമണി, ആര്‍സെനിക്, ഫോസ്ഫെറസ് മുതലായവയാണ് എന്‍-ഇനം നിര്‍മിക്കാനുപയോഗിക്കുന്ന ഡോണര്‍ പദാര്‍ഥങ്ങള്‍ (donar impurities).

അര്‍ധചാലക വസ്തുവിനെ അക്സെപ്റ്റെര്‍ പദാര്‍ഥം കൊണ്ടാണ് ഡോപ്പ് ചെയ്യുന്നത് എങ്കില്‍, അര്‍ധചാലക പരല്‍ ഘടനയില്‍ ഇത് ഇലക്ട്രോണുകളുടെ അഭാവം അഥവാ ഹോളുകള്‍, സൃഷ്ടിക്കുന്നു. ഇത്തരം അര്‍ധചാലക വസ്തുവില്‍ ഹോളിന്റെ ധ്രുവതയെ സൂചിപ്പിക്കുന്ന 'positive' എന്ന വാക്കിനെ p ഉള്‍പ്പെടുത്തി ഈ അര്‍ധചാലക വസ്തുക്കളെ പി-ഇനം (p-type) എന്ന് വിളിക്കുന്നു. അലൂമിനിയം, ബോറോണ്‍, ഗാലിയം, ഇന്‍ഡിയം മുതലായവയാണ് പി-ഇനം അര്‍ധചാലകത്തിലുപയോഗിക്കുന്ന അക്സെപ്റ്റെറുകള്‍.

വര്‍ഗീകരണം. ട്രാന്‍സിസ്റ്ററുകളെ പ്രധാനമായി ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്റര്‍, ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ എന്നിങ്ങനെ രണ്ടിനങ്ങളായി വര്‍ഗീകരിക്കാം. ഇവയോരോന്നിലും വീണ്ടും ഉപ വിഭാഗങ്ങള്‍ ഉണ്ട്. നിവേശ വൈദ്യുത ധാരയുടെ പ്രവര്‍ധനമാണ് (amplification) ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകളില്‍ നടക്കുന്നത്. അതായത് നിര്‍ഗമത്തില്‍ ലഭിക്കുന്ന ധാരയുടെ അളവ് നിവേശത്തില്‍ ഉള്ളതിനെ അപേക്ഷിച്ച് വളരെ ഉയര്‍ന്നതായിരിക്കും. വൈദ്യുത ധാരയുടെ തീവ്രതയ്ക്കനുസൃത മായി ധാരയുടെ ശക്തിയും ഉയര്‍ന്നതായതിനാല്‍ ബൈപോളാര്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ധാരാ പ്രവര്‍ധകങ്ങള്‍ എന്നതോടൊപ്പം ശക്തി പ്രവര്‍ധകങ്ങള്‍ (power amplifiers) കൂടിയാണ്. ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററുകളില്‍ നിവേശ വോള്‍ട്ടതയെ അപേക്ഷിച്ച് വലിയ മടങ്ങ് നിര്‍ഗമ വോള്‍ട്ടതയാണ് ലഭിക്കുന്നത്. ഇതിനാല്‍ ഇവയെ വോള്‍ട്ടത പ്രവധകങ്ങള്‍ എന്ന് സൂചിപ്പിക്കാറുണ്ട്. പ്രവര്‍ത്തനങ്ങളില്‍ നിര്‍വാത ട്യൂബുകളുമായി കൂടുതല്‍ സാദ്യശ്യം പ്രകടിപ്പിക്കുന്നതും ഇവയാണ്. വോള്‍ട്ടതയ്ക്കാനുപാതികമായി ശക്തിയും കൂടുന്നതിനാല്‍ ഇവയും ശക്തി പ്രവര്‍ധകങ്ങള്‍ തന്നെ.

രണ്ടു ജങ്ഷന്‍ ട്രാന്‍സിസ്റ്ററുകള്‍ ഉള്‍ക്കൊള്ളുന്നതാണ് ബൈപോളാര്‍ - ട്രാന്‍സിസ്റ്റര്‍. ഒരു പി-ദ്വിധ്രുവീയ ഇനം അര്‍ധചാലക ദണ്ഡ് എടുത്ത് അതിന്റെ രണ്ടു വശത്തുമായി എന്‍-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് നിര്‍മിക്കുന്നവയാണ് npn ട്രാന്‍സിസ്റ്റര്‍; മറിച്ച് എന്‍-ഇനം അര്‍ധചാലക ദണ്ഡിന്റെ രണ്ടഗ്രങ്ങളിലുമായി പി-ഇനം പദാര്‍ഥം ഡോപ്പിങ് വഴി കടത്തിവിട്ട് തയ്യാറാക്കുന്നവയാണ് pnp ട്രാന്‍സിസ്റ്റര്‍. ഇത്തരത്തില്‍ ഒരു ട്രാന്‍സിസ്റ്ററില്‍ മൂന്നു പാളികള്‍ ഉണ്ടാകും-p,n,p പാളികളോ,n,p,n പാളികളോ; ഇതിനനുസൃതമായി അവയെpnp,npn ട്രാന്‍സിസ്റ്ററുകള്‍ എന്ന് സൂചിപ്പിക്കുന്നു. ട്രാന്‍സിസ്റ്ററിന്റെ ഒരു വശത്തെ പാളിയെ ഉല്‍സര്‍ജകം (emitter) എന്നും മറുവശത്തെ പാളിയെ സംഗ്രാഹകം (collector) എന്നും ഇവയ്ക്കിടയിലുള്ള കനം കുറഞ്ഞ മധ്യ പാളിയെ ആധാരം അഥവാ മൂലം (base) എന്നും സൂചിപ്പിക്കുന്നു.

ട്രാന്‍സിസ്റ്ററുകളെ പരിപഥത്തില്‍ മൂന്നു രീതിയില്‍ ഘടിപ്പിക്കാം. ഉല്‍സര്‍ജകം, സംഗ്രാഹകം, ആധാരം എന്നിവയില്‍ ഒന്നിനെ നിവേശ പരിപഥത്തിലും നിര്‍ഗമ പരിപഥത്തിലും ഉള്‍പ്പെടുന്ന രീതിയില്‍ ക്രമീകരിക്കുമ്പോള്‍ ലഭിക്കുന്നവയാണ് യഥാക്രമം പൊതു ഉല്‍സര്‍ജകം (common emitter), പൊതു സംഗ്രാഹകം (common collector), പൊതു ആധാരം (common base) പരിപഥ രീതികള്‍.

പ്രവര്‍ത്തന രീതി. ട്രാന്‍സിസ്റ്ററിനു കുറുകേ ഒരു പരിപഥം രണ്ടു രീതിയില്‍ ഘടിപ്പിക്കാം. ഒരു ജങ്ഷനിലെ n പാളി ധനാത്മകവും തൊട്ടടുത്ത p പാളി ഋണാത്മകവുമായി വരുന്ന തരത്തില്‍ ബാഹ്യ പരിപഥം രൂപപ്പെടുന്നതാണ് ഒരു രീതി. ഇത്തരം അവസ്ഥയില്‍ n,p പാളികള്‍ക്കിടയില്‍ അനുഭവപ്പെടുന്ന ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കൂടിയതായിരിക്കും. വളരെ നേരിയ അളവിലുള്ള ധാരാ പ്രവാഹം മാത്രമേ ഇത്തരത്തില്‍ ജങ്ഷനു കുറുകേ അനുഭവപ്പെടാറുള്ളൂ. ഈ രീതിയെ ഉല്‍ക്രമ ബയ്സ് (reverse bais) എന്നു സൂചിപ്പിക്കുന്നു. ഇതിനുപകരമായി n തലം ഋണാത്മകവും p തലം ധനാത്മകവും ആകുന്ന തരത്തിലാണ് ബാഹ്യ പരിപഥം ഘടിപ്പിക്കുന്നതെങ്കില്‍ ജങ്ഷന്‍ പ്രതിരോധകത വളരെ കുറവായിരിക്കും. തന്മൂലം വളരെ ഉയര്‍ന്ന തോതിലുള്ള ധാരാ പ്രവാഹവും ലഭിക്കുന്നു. ഇതിനെ മുന്നോക്ക ബയ്സ് (forward bais) എന്ന് സൂചിപ്പിക്കുന്നു.

ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്ററിനെ ജങ്ഷന്‍ ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (JPET) എന്നും ഇന്‍സുലേറ്റെഡ്- ഗേറ്റ് ഫീല്‍ഡ് ഇഫെക്റ്റ് ട്രാന്‍സിസ്റ്റര്‍ (IGFET) എന്നും രണ്ടായി തരം തിരിക്കാം. p- ഇനം അല്ലെങ്കില്‍ n- ഇനം സിലിക്കോണ്‍ ദണ്ഡില്‍ മധ്യഭാഗത്തായി പരസ്പരം അഭിമുഖമായി വരത്തക്ക രീതിയില്‍ യഥാക്രമം n അഥവാ p പാളികള്‍ ഡോപ്പിങ്ങിലൂടെ സൃഷ്ടിച്ചാണ് JFET നിര്‍മിക്കുന്നത്. പരിപഥങ്ങളില്‍ വളരെ കൂടിയ ഇന്‍പുട്ട് പ്രതിരോധകത പ്രകടിപ്പിക്കുന്ന ഒന്നാണ് JFET.

JFET യില്‍ രണ്ട് പിഎന്‍ ജങ്ഷനുകള്‍ ചേര്‍ന്ന് രൂപപ്പെടുത്തുന്നതാണ് ഗേറ്റ്. പക്ഷേ, ഇതിനു പകരം, ട്രാന്‍സിസ്റ്ററിന്റെ ഇതര ഭാഗങ്ങളില്‍ നിന്ന് രോധനം ചെയ്യപ്പെട്ട (insulated)തരത്തിലുള്ള ഒരു ലോഹ ഇലക്ട്രോഡിനെ, ഗേറ്റായി പ്രവര്‍ത്തിക്കുന്ന തരത്തില്‍ നിര്‍മിക്കപ്പെടുന്നവയാണ് IGFET. JFET യെ അപേക്ഷിച്ച് വളരെ കൂടിയതാണ് ഇതിന്റെ നിവേശ പ്രതിരോധകത.

സുതാര്യ ട്രാന്‍സിസ്റ്റര്‍. ഓറിഗണ്‍ സ്റ്റേറ്റ് സര്‍വകലാശാലയിലെ റാന്‍ഡി ഹൊഫ്മാന്‍, ബെന്‍നോറിസ് എന്നീ ശാസ്ത്രജ്ഞന്മാരുടെ ഗവേഷണ ഫലമായി വികസിപ്പിച്ചെടുത്ത ഒരു നൂതന ട്രാന്‍സിസ്റ്ററാണിത്. ഉപഭോഗ ഇലക്ട്രോണിക്സ്, ഗതാഗതം, വ്യവസായം, സൈനികം തുടങ്ങിയ രംഗങ്ങളില്‍ പരിവര്‍ത്തനങ്ങള്‍ സൃഷ്ടിക്കാന്‍ പര്യാപ്തമായ കണ്ടുപിടിത്തമായിട്ടാണ് ശാസ്ത്രലോകം ഇതിനെ വിലയിരുത്തുന്നത്. താഴ്ന്ന താപനിലകളില്‍ കനം കുറഞ്ഞ പാളി രൂപത്തില്‍ (thin films) നിക്ഷേപിക്കാനാവുന്നതും പരിസ്ഥിതിക്കു ദോഷം വരുത്താത്തതുമായ സിങ്ക് ഓക്സൈഡ് പദാര്‍ഥം ഉപയോഗിച്ച് നിര്‍മിച്ച എന്‍-ഇനം ട്രാന്‍സിസ്റ്ററായ ഇത് സുതാര്യത ഉള്ളതു കൂടിയാണ്. ഇവ ഉപയുക്തമായി നിര്‍മിക്കുന്ന ലിക്വിഡ് ക്രിസ്റ്റല്‍ ഡിസ് പ്ലേകളില്‍ അക്ഷരങ്ങളും മറ്റും കൂടുതല്‍ വ്യക്തതയോടും തെളിച്ചത്തോടും കൂടി പ്രദര്‍ശിപ്പിക്കാനാകും. ജനാലയുടെ കണ്ണാടിപ്പാളികള്‍, കാറിന്റെ വിന്‍ഡ്സ്ക്രീന്‍ എന്നിവയുടെ ഉള്ളറകളില്‍ ഇലക്ട്രോണിക് ഉപകരണങ്ങള്‍ നിര്‍മിച്ചു ചേര്‍ക്കുന്നതിനും സുതാര്യ ട്രാന്‍സിസ്റ്ററുകള്‍ പ്രയോജനപ്പെടുത്താവുതാണ്. ഇതിനു പുറമേ ദൃശ്യ വിവരങ്ങളുടെ പ്രേഷണവും ഇവ സുസാധ്യമാക്കുന്നു.

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍