This site is not complete. The work to converting the volumes of സര്‍വ്വവിജ്ഞാനകോശം is on progress. Please bear with us
Please contact webmastersiep@yahoo.com for any queries regarding this website.

Reading Problems? see Enabling Malayalam

താപഗതികം

സര്‍വ്വവിജ്ഞാനകോശം സംരംഭത്തില്‍ നിന്ന്

(തിരഞ്ഞെടുത്ത പതിപ്പുകള്‍ തമ്മിലുള്ള വ്യത്യാസം)
(താപഗതികം)
 
(ഇടക്കുള്ള 3 പതിപ്പുകളിലെ മാറ്റങ്ങള്‍ ഇവിടെ കാണിക്കുന്നില്ല.)
വരി 1: വരി 1:
=താപഗതികം=  
=താപഗതികം=  
 +
Thermodynamics
-
ഠവലൃാീറ്യിമാശര
+
താപം, താപനില എന്നീ ആശയങ്ങളെപ്പറ്റിയും താപവും മറ്റ് ഊര്‍ജരൂപങ്ങളും തമ്മിലുള്ള രൂപാന്തരണത്തെപ്പറ്റിയും പ്രതിപാദിക്കുന്ന ഭൗതികശാസ്ത്രശാഖ. പ്രധാനമായും താപവും യാന്ത്രികോര്‍ജവും (പ്രവൃത്തി) തമ്മിലുള്ള ബന്ധത്തെയാണ് താപഗതികം വിസ്തരിച്ചു പഠനവിധേയമാക്കുന്നത്. താപോര്‍ജം ഏതെല്ലാം തരത്തിലാണ് പദാര്‍ഥങ്ങളുമായി പ്രവര്‍ത്തനങ്ങളില്‍ ഏര്‍പ്പെടുകയെന്നും ഒരു വസ്തുവില്‍നിന്ന് മറ്റൊരു വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റം ചെയ്യപ്പെടുമ്പോള്‍ എന്തു സംഭവിക്കുന്നുവെന്നും താപോര്‍ജം ചലനോര്‍ജമായി പരിവര്‍ത്തനം ചെയ്യപ്പെടുന്നത് എങ്ങനെയെന്നും ഇതില്‍ വിശദീകരിക്കുന്നു. ദ്രവ്യത്തിന്റെ തന്മാത്ര, ആറ്റം, ഇലക്ട്രോണുകള്‍ എന്നീ സൂക്ഷ്മതലങ്ങളിലേക്കൊന്നും കടക്കാതെയുള്ള പഠനമായതുകൊണ്ട് താപഗതികത്തെ ഒരു സ്ഥൂലശാസ്ത്രം (macroscopic science) ആയി പരിഗണിക്കാം. ശാസ്ത്രത്തിന്റെ എല്ലാ ശാഖകളിലും എന്‍ജിനീയറിങ്ങിലും താപഗതിക തത്ത്വങ്ങള്‍ വളരെ പ്രാധാന്യമുള്ളവയാണ്. പെട്രോള്‍ യന്ത്രം, ഡീസല്‍ യന്ത്രം, ആവിയന്ത്രം, ജറ്റ് യന്ത്രം, റോക്കറ്റ് യന്ത്രം എന്നീ വിവിധയിനം താപ എന്‍ജിനുകളിലും ചൂളകള്‍ (furnaces), ശീതീകരണ സംവിധാനങ്ങള്‍, വിവിധയിനം പ്ളാസ്റ്റിക്, രാസവസ്തുക്കള്‍ എന്നിവയുടെ നിര്‍മാണ സജ്ജീകരണങ്ങള്‍ എന്നിവയിലും താപഗതിക തത്ത്വങ്ങള്‍ പ്രയോജനപ്പെടുത്തുന്നുണ്ട്.
-
താപം, താപനില എന്നീ ആശയങ്ങളെപ്പറ്റിയും താപവും മറ്റ് ഊര്‍ജരൂപങ്ങളും തമ്മിലുള്ള രൂപാന്തരണത്തെപ്പറ്റിയും പ്രതിപാദിക്കുന്ന ഭൌതികശാസ്ത്രശാഖ. പ്രധാനമായും താപവും യാന്ത്രികോര്‍ജവും (പ്രവൃത്തി) തമ്മിലുള്ള ബന്ധത്തെയാണ് താപഗതികം വിസ്തരിച്ചു പഠനവിധേയമാക്കുന്നത്. താപോര്‍ജം ഏതെല്ലാം തരത്തിലാണ് പദാര്‍ഥങ്ങളുമായി പ്രവര്‍ത്തനങ്ങളില്‍ ഏര്‍പ്പെടുകയെന്നും ഒരു വസ്തുവില്‍നിന്ന് മറ്റൊരു വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റം ചെയ്യപ്പെടുമ്പോള്‍ എന്തു സംഭവിക്കുന്നുവെന്നും താപോര്‍ജം ചലനോര്‍ജമായി പരിവര്‍ത്തനം ചെയ്യപ്പെടുന്നത് എങ്ങനെയെന്നും ഇതില്‍ വിശദീകരിക്കുന്നു. ദ്രവ്യത്തിന്റെ തന്മാത്ര, ആറ്റം, ഇലക്ട്രോണുകള്‍ എന്നീ സൂക്ഷ്മതലങ്ങളിലേക്കൊന്നും കടക്കാതെയുള്ള പഠനമായതുകൊണ്ട് താപഗതികത്തെ ഒരു സ്ഥൂലശാസ്ത്രം (ാമരൃീരീുെശര രെശലിരല) ആയി പരിഗണിക്കാം. ശാസ്ത്രത്തിന്റെ എല്ലാ ശാഖകളിലും എന്‍ജിനീയറിങ്ങിലും താപഗതിക തത്ത്വങ്ങള്‍ വളരെ പ്രാധാന്യമുള്ളവയാണ്. പെട്രോള്‍ യന്ത്രം, ഡീസല്‍ യന്ത്രം, ആവിയന്ത്രം, ജറ്റ് യന്ത്രം, റോക്കറ്റ് യന്ത്രം എന്നീ വിവിധയിനം താപ എന്‍ജിനുകളിലും ചൂളകള്‍ (ളൌൃിമരല), ശീതീകരണ സംവിധാനങ്ങള്‍, വിവിധയിനം പ്ളാസ്റ്റിക്, രാസവസ്തുക്കള്‍ എന്നിവയുടെ നിര്‍മാണ സജ്ജീകരണങ്ങള്‍ എന്നിവയിലും താപഗതിക തത്ത്വങ്ങള്‍ പ്രയോജനപ്പെടുത്തുന്നുണ്ട്.
+
[[Image:p430aa1.png|p430aa1.png]]
-
 
+
-
[[Image:p430aa1.png|400px|centre]]
+
[[Image:p430a2.png]]
[[Image:p430a2.png]]
-
താപഗതിക നിയമങ്ങള്‍. എല്ലാ ഭൌതിക പ്രവര്‍ത്തനങ്ങളേയുംപോലെതന്നെ താപചലനവും ചില അടിസ്ഥാന നിയമങ്ങള്‍ക്കു വിധേയമായിട്ടാണു നടക്കുന്നത്. ഈ താപഗതിക നിയമങ്ങള്‍ 19-ാം ശ.-ത്തിലാണ് ആവിഷ്കരിക്കപ്പെട്ടത്. എല്ലാ താപഗതിക പ്രക്രിയകളേയും അവയുടെ പരിമിതികളേയും വിശദീകരിക്കുന്നവയാണ് ഈ നിയമങ്ങള്‍.
+
'''താപഗതിക നിയമങ്ങള്‍.''' എല്ലാ ഭൗതിക പ്രവര്‍ത്തനങ്ങളേയുംപോലെതന്നെ താപചലനവും ചില അടിസ്ഥാന നിയമങ്ങള്‍ക്കു വിധേയമായിട്ടാണു നടക്കുന്നത്. ഈ താപഗതിക നിയമങ്ങള്‍ 19-ാം ശ.-ത്തിലാണ് ആവിഷ്കരിക്കപ്പെട്ടത്. എല്ലാ താപഗതിക പ്രക്രിയകളേയും അവയുടെ പരിമിതികളേയും വിശദീകരിക്കുന്നവയാണ് ഈ നിയമങ്ങള്‍.
-
താപഗതികത്തിലെ പൂജ്യം നിയമം (ദലൃീവേ ഹമം ീള ഠവലൃാീറ്യിമാശര). താപനില (ലാുേലൃമൌൃല) എന്നതിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. താപഗതിക നിയമങ്ങളില്‍ ഏറ്റവും അടിസ്ഥാനപരമായിട്ടുള്ളതും ഈ നിയമമാണ്. ഒന്നും രണ്ടും നിയമങ്ങള്‍ കണ്ടുപിടിച്ചതിനുശേഷം മാത്രമാണ് ഈ നിയമം കണ്ടുപിടിക്കപ്പെട്ടത്. എന്നാല്‍ പ്രാധാന്യമനുസരിച്ച് ഇത് ഒന്നും രണ്ടും നിയമങ്ങള്‍ക്കു മുമ്പേ പ്രതിപാദിക്കേണ്ടിവരുന്നു. അതിനാലാണ് പൂജ്യം നിയമം (്വലൃീവേ ഹമം) എന്ന പേരു വന്നത്. റാല്‍ഫ് എച്ച്. ഫൌളര്‍ എന്ന ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞന്‍  1931-ലാണ് ഈ നിയമം ആവിഷ്കരിച്ചത്.
+
'''താപഗതികത്തിലെ പൂജ്യം നിയമം (Zeroth law of Thermodynamics).''' താപനില (temperature) എന്നതിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. താപഗതിക നിയമങ്ങളില്‍ ഏറ്റവും അടിസ്ഥാനപരമായിട്ടുള്ളതും ഈ നിയമമാണ്. ഒന്നും രണ്ടും നിയമങ്ങള്‍ കണ്ടുപിടിച്ചതിനുശേഷം മാത്രമാണ് ഈ നിയമം കണ്ടുപിടിക്കപ്പെട്ടത്. എന്നാല്‍ പ്രാധാന്യമനുസരിച്ച് ഇത് ഒന്നും രണ്ടും നിയമങ്ങള്‍ക്കു മുമ്പേ പ്രതിപാദിക്കേണ്ടിവരുന്നു. അതിനാലാണ് പൂജ്യം നിയമം (zeroth law) എന്ന പേരു വന്നത്. റാല്‍ഫ് എച്ച്. ഫൗളര്‍ എന്ന ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞന്‍  1931-ലാണ് ഈ നിയമം ആവിഷ്കരിച്ചത്.
-
രണ്ട് വസ്തുക്കള്‍ സന്തുലിതാവസ്ഥയിലായിരിക്കുമ്പോള്‍ അവ ഒരു പൊതുഗുണം ഉള്ളവയായിരിക്കും. അളക്കപ്പെടാവുന്നതും ഒരു നിശ്ചിത അക്കമൂല്യം സംസ്ഥാപിക്കപ്പെടാവുന്നതും ആയിരിക്കും ഈ ഗുണം. അതായത് "സന്തുലിതാവസ്ഥയിലിരിക്കുന്ന രണ്ട് വ്യൂഹങ്ങളില്‍ ഓരോന്നും മൂന്നാമതൊരു വ്യൂഹവുമായി സന്തുലിതാവസ്ഥയിലാണെങ്കില്‍, ആദ്യത്തെ രണ്ട് വ്യൂഹങ്ങളും പരസ്പരം സന്തുലിതാവസ്ഥയിലായിരിക്കും''. സന്തുലിതാവസ്ഥയുടെ ഈ പങ്കിടല്‍ഗുണമാണ് 'താപനില' എന്നത്. ഇതാണ് താപഗതികത്തിലെ പൂജ്യം നിയമം (്വലൃീവേ ഹമം). അതായത് വ്യൂഹങ്ങള്‍ യും യും സ്വതന്ത്രമായി എന്ന വ്യൂഹത്തോട് സന്തുലിതാവസ്ഥയിലായിരുന്നാല്‍ യും യും താപീയമായി സന്തുലിതാവസ്ഥയിലായിരിക്കും.  
+
രണ്ട് വസ്തുക്കള്‍ സന്തുലിതാവസ്ഥയിലായിരിക്കുമ്പോള്‍ അവ ഒരു പൊതുഗുണം ഉള്ളവയായിരിക്കും. അളക്കപ്പെടാവുന്നതും ഒരു നിശ്ചിത അക്കമൂല്യം സംസ്ഥാപിക്കപ്പെടാവുന്നതും ആയിരിക്കും ഈ ഗുണം. അതായത് "സന്തുലിതാവസ്ഥയിലിരിക്കുന്ന രണ്ട് വ്യൂഹങ്ങളില്‍ ഓരോന്നും മൂന്നാമതൊരു വ്യൂഹവുമായി സന്തുലിതാവസ്ഥയിലാണെങ്കില്‍, ആദ്യത്തെ രണ്ട് വ്യൂഹങ്ങളും പരസ്പരം സന്തുലിതാവസ്ഥയിലായിരിക്കും''. സന്തുലിതാവസ്ഥയുടെ ഈ പങ്കിടല്‍ഗുണമാണ് 'താപനില' എന്നത്. ഇതാണ് താപഗതികത്തിലെ പൂജ്യം നിയമം (zeroth law). അതായത് വ്യൂഹങ്ങള്‍ A യും B യും സ്വതന്ത്രമായി C എന്ന വ്യൂഹത്തോട് സന്തുലിതാവസ്ഥയിലായിരുന്നാല്‍ A യും B യും താപീയമായി സന്തുലിതാവസ്ഥയിലായിരിക്കും.  
-
ഠഅ = ഠഇ യും ഠആ   =  ഠഇ യും ആയാല്‍  
+
T<sub>A</sub> = T<sub>c</sub> യും T<sub>B</sub>   =  T<sub>C</sub> യും ആയാല്‍  
-
ഠഅ = ഠആ ആയിരിക്കും.
+
T<sub>A</sub> = T<sub>B</sub> ആയിരിക്കും.
ഈ നിയമത്തില്‍ താപനില അളക്കുന്നതിനെപ്പറ്റിയും ആ അളവിന്റെ അര്‍ഥമെന്താണ് എന്നതിനെപ്പറ്റിയുമുള്ള അടിസ്ഥാന ആശയങ്ങള്‍ ഉള്‍ക്കൊണ്ടിട്ടുണ്ട്. ഇതില്‍നിന്ന് ഒരു വസ്തുവിന്റെ 'താപനില'എന്നത് ആ വസ്തുവിന്റെ ഒരു ഗുണവിശേഷം ആണെന്നും, മറ്റുള്ള വസ്തുക്കളുമായി ബന്ധപ്പെടുമ്പോള്‍ താപസമതുലിതാവസ്ഥയാണോ താപക്കൈമാറ്റമാണോ ഉണ്ടാകുന്നത് എന്നു നിശ്ചയിക്കുന്നത് ഈ ഗുണവിശേഷം ആണെന്നും മനസ്സിലാക്കാം. ഈ നിയമത്തിലടങ്ങിയിട്ടുള്ള തത്ത്വമാണ് തെര്‍മോമീറ്റര്‍ ഉപയോഗിച്ച് ഒരു വസ്തുവിന്റെ താപനില അളക്കാന്‍ നാം ഉപയോഗപ്പെടുത്തുന്നത്. ഇവിടെ, തെര്‍മോമീറ്ററിലെ ബള്‍ബിന്റേയും വസ്തുവിന്റേയും താപനില ഒന്നുപോലെ ആകുന്നതുവരെ താപപ്രവാഹം നടക്കുന്നു.
ഈ നിയമത്തില്‍ താപനില അളക്കുന്നതിനെപ്പറ്റിയും ആ അളവിന്റെ അര്‍ഥമെന്താണ് എന്നതിനെപ്പറ്റിയുമുള്ള അടിസ്ഥാന ആശയങ്ങള്‍ ഉള്‍ക്കൊണ്ടിട്ടുണ്ട്. ഇതില്‍നിന്ന് ഒരു വസ്തുവിന്റെ 'താപനില'എന്നത് ആ വസ്തുവിന്റെ ഒരു ഗുണവിശേഷം ആണെന്നും, മറ്റുള്ള വസ്തുക്കളുമായി ബന്ധപ്പെടുമ്പോള്‍ താപസമതുലിതാവസ്ഥയാണോ താപക്കൈമാറ്റമാണോ ഉണ്ടാകുന്നത് എന്നു നിശ്ചയിക്കുന്നത് ഈ ഗുണവിശേഷം ആണെന്നും മനസ്സിലാക്കാം. ഈ നിയമത്തിലടങ്ങിയിട്ടുള്ള തത്ത്വമാണ് തെര്‍മോമീറ്റര്‍ ഉപയോഗിച്ച് ഒരു വസ്തുവിന്റെ താപനില അളക്കാന്‍ നാം ഉപയോഗപ്പെടുത്തുന്നത്. ഇവിടെ, തെര്‍മോമീറ്ററിലെ ബള്‍ബിന്റേയും വസ്തുവിന്റേയും താപനില ഒന്നുപോലെ ആകുന്നതുവരെ താപപ്രവാഹം നടക്കുന്നു.
-
ഒന്നാം താപഗതിക നിയമം (ളശൃ ഹമം ീള ഠവലൃാീറ്യിമാശര). താപം എന്ന് സര്‍വസാധാരണമായി ഉപയോഗിക്കുന്ന ആശയത്തിന്റെ നിര്‍വചനം നല്കുന്നതാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. റഥര്‍ഫോര്‍ഡ്, ജൂള്‍ തുടങ്ങിയ ശാസ്ത്രജ്ഞര്‍ നടത്തിയ പരീക്ഷണങ്ങളാണ് താപഗതികത്തിലെ ഒന്നാം നിയമത്തിന് അടിത്തറ പാകിയത്. അവരുടെ പരീക്ഷണങ്ങള്‍ = ഖഒ എന്നു തെളിയിച്ചു. ഇതുതന്നെയാണ് ഒന്നാം നിയമവും. എന്നത് താപത്തിന്റെ യാന്ത്രിക തുല്യാങ്കം (ാലരവമിശരമഹ ലൂൌശ്മഹലി ീള വലമ) ആണ്. അതായത് 'ഏതെങ്കിലും ഒരു പ്രവൃത്തിയുടെ () ഫലമായി താപം () ജന്യമാകുകയാണ് എങ്കില്‍ ഓരോ നിശ്ചിത മാത്ര താപമേ ജന്യമാവുകയുള്ളൂ. മറിച്ച്, താപോര്‍ജം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുകയാണ് എങ്കില്‍ എല്ലായ്പ്പോഴും നിശ്ചിത അളവ് താപത്തില്‍ നിന്ന് ഒരു നിശ്ചിത മാത്ര പ്രവൃത്തി മാത്രമേ ജന്യമാവുകയുള്ളൂ'.”
+
'''ഒന്നാം താപഗതിക നിയമം (first law of Thermodynamics).''' താപം എന്ന് സര്‍വസാധാരണമായി ഉപയോഗിക്കുന്ന ആശയത്തിന്റെ നിര്‍വചനം നല്കുന്നതാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. റഥര്‍ഫോര്‍ഡ്, ജൂള്‍ തുടങ്ങിയ ശാസ്ത്രജ്ഞര്‍ നടത്തിയ പരീക്ഷണങ്ങളാണ് താപഗതികത്തിലെ ഒന്നാം നിയമത്തിന് അടിത്തറ പാകിയത്. അവരുടെ പരീക്ഷണങ്ങള്‍ W = JH എന്നു തെളിയിച്ചു. ഇതുതന്നെയാണ് ഒന്നാം നിയമവും. J എന്നത് താപത്തിന്റെ യാന്ത്രിക തുല്യാങ്കം (mechanical equivalent of heat) ആണ്. അതായത് 'ഏതെങ്കിലും ഒരു പ്രവൃത്തിയുടെ (W) ഫലമായി താപം (H) ജന്യമാകുകയാണ് എങ്കില്‍ ഓരോ നിശ്ചിത മാത്ര താപമേ ജന്യമാവുകയുള്ളൂ. മറിച്ച്, താപോര്‍ജം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുകയാണ് എങ്കില്‍ എല്ലായ്പ്പോഴും നിശ്ചിത അളവ് താപത്തില്‍ നിന്ന് ഒരു നിശ്ചിത മാത്ര പ്രവൃത്തി മാത്രമേ ജന്യമാവുകയുള്ളൂ'.
-
സാര്‍വത്രികമായ ഊര്‍ജസംരക്ഷണ നിയമത്തിന്റെ മറ്റൊരു ആവിഷ്കരണം മാത്രമാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. ഈ തത്ത്വപ്രകാരം ഊര്‍ജം നിര്‍മിക്കുവാനോ നശിപ്പിക്കുവാനോ സാധിക്കുകയില്ല. എന്നാല്‍ ഒരു രൂപത്തില്‍ നിന്നു മറ്റൊരു രൂപത്തിലേക്ക് ഊര്‍ജത്തെ മാറ്റിയെടുക്കാം. ഒരു വസ്തുവിന് നാം കൊടുക്കുന്ന താപം സംരക്ഷിക്കപ്പെടുന്നു എന്നു സാരം; രൂപമാറ്റങ്ങള്‍ ഉണ്ടാകാം എന്നു മാത്രം. താപത്തിന്റെ ഏകകം (ൌിശ) കലോറിയും പ്രവൃത്തിയുടേയും ഊര്‍ജത്തിന്റെയും ഏകകം എര്‍ഗും ആണ്.
+
സാര്‍വത്രികമായ ഊര്‍ജസംരക്ഷണ നിയമത്തിന്റെ മറ്റൊരു ആവിഷ്കരണം മാത്രമാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. ഈ തത്ത്വപ്രകാരം ഊര്‍ജം നിര്‍മിക്കുവാനോ നശിപ്പിക്കുവാനോ സാധിക്കുകയില്ല. എന്നാല്‍ ഒരു രൂപത്തില്‍ നിന്നു മറ്റൊരു രൂപത്തിലേക്ക് ഊര്‍ജത്തെ മാറ്റിയെടുക്കാം. ഒരു വസ്തുവിന് നാം കൊടുക്കുന്ന താപം സംരക്ഷിക്കപ്പെടുന്നു എന്നു സാരം; രൂപമാറ്റങ്ങള്‍ ഉണ്ടാകാം എന്നു മാത്രം. താപത്തിന്റെ ഏകകം (unit) കലോറിയും പ്രവൃത്തിയുടേയും ഊര്‍ജത്തിന്റെയും ഏകകം എര്‍ഗും ആണ്.
-
  1 കലോറി = 4.186 ഃ 107 എര്‍ഗ്
+
1 കലോറി = 4.186 &times; 10<sup>7</sup> എര്‍ഗ്
-
  = 4.186 ജൂള്‍ ആണ്.
+
= 4.186 ജൂള്‍ ആണ്.
-
എല്ലാ യന്ത്രങ്ങളിലും കുറെയെങ്കിലും ഊര്‍ജം രൂപാന്തരപ്പെട്ടാണ് പ്രവൃത്തി (ംീൃസ) ഉണ്ടാകുന്നത്. ഒന്നാം നിയമം താപത്തെ ഊര്‍ജ ത്തിന്റെ ഒരു രൂപമായി കാണുകയും യാന്ത്രികപ്രവൃത്തിയായി (ാലരവമിശരമഹ ംീൃസ) അതിനെ പരിവര്‍ത്തനപ്പെടുത്തുകയും ശേഖരി ച്ചുവയ്ക്കുകയും ചെയ്യാം എന്ന് അനുശാസിക്കുകയും ചെയ്യുന്നു. ഒരു വ്യൂഹത്തിലേക്കു മാറ്റിയ താപവും പ്രസ്തുത വ്യൂഹത്തില്‍ ചെയ്ത പ്രവൃത്തിയും ചേര്‍ന്ന് വ്യൂഹത്തിന്റെ ആന്തരികോര്‍ജത്തിന്റെ (ശിലൃിേമഹ ലിലൃഴ്യ) വര്‍ധനവിനു കാരണമാകുന്നു. വ്യൂഹങ്ങള്‍ താപവും പ്രവൃത്തിയുമായി ഊര്‍ജങ്ങള്‍ പരസ്പരം കൈമാറ്റം ചെയ്യുന്നു എന്നു സാരം. ക്ളോഷിയസ് ഒന്നാം നിയമത്തെ ഇപ്രകാരം ക്രോഡീകരിച്ചിരിക്കുന്നു.
+
എല്ലാ യന്ത്രങ്ങളിലും കുറെയെങ്കിലും ഊര്‍ജം രൂപാന്തരപ്പെട്ടാണ് പ്രവൃത്തി (work) ഉണ്ടാകുന്നത്. ഒന്നാം നിയമം താപത്തെ ഊര്‍ജ ത്തിന്റെ ഒരു രൂപമായി കാണുകയും യാന്ത്രികപ്രവൃത്തിയായി (mechanical work) അതിനെ പരിവര്‍ത്തനപ്പെടുത്തുകയും ശേഖരി ച്ചുവയ്ക്കുകയും ചെയ്യാം എന്ന് അനുശാസിക്കുകയും ചെയ്യുന്നു. ഒരു വ്യൂഹത്തിലേക്കു മാറ്റിയ താപവും പ്രസ്തുത വ്യൂഹത്തില്‍ ചെയ്ത പ്രവൃത്തിയും ചേര്‍ന്ന് വ്യൂഹത്തിന്റെ ആന്തരികോര്‍ജത്തിന്റെ (internal energy) വര്‍ധനവിനു കാരണമാകുന്നു. വ്യൂഹങ്ങള്‍ താപവും പ്രവൃത്തിയുമായി ഊര്‍ജങ്ങള്‍ പരസ്പരം കൈമാറ്റം ചെയ്യുന്നു എന്നു സാരം. ക്ളോഷിയസ് ഒന്നാം നിയമത്തെ ഇപ്രകാരം ക്രോഡീകരിച്ചിരിക്കുന്നു.
-
  റഝ  റഡ + റണ
+
dQ dU +dW
-
  ഇവിടെ റഝ നല്കപ്പെടുന്ന താപവും
+
ഇവിടെ dQ നല്കപ്പെടുന്ന താപവും
-
  റഡ യാന്ത്രികോര്‍ജ മാത്രയിലുള്ള വര്‍ധനവും
+
dU യാന്ത്രികോര്‍ജ മാത്രയിലുള്ള വര്‍ധനവും
-
  റണ ചെയ്യപ്പെടുന്ന ബാഹ്യ പ്രവൃത്തിയുമാണ്.
+
dW ചെയ്യപ്പെടുന്ന ബാഹ്യ പ്രവൃത്തിയുമാണ്.
-
  രുദ്ധോഷ്മ വ്യതിയാനമാണെങ്കില്‍, റഝ =  0
+
രുദ്ധോഷ്മ വ്യതിയാനമാണെങ്കില്‍, dQ =  0
-
  അതുകൊണ്ട് റഡ –റണ.
+
അതുകൊണ്ട് dU -dW.
-
രണ്ടാം താപഗതിക നിയമം (ടലരീിറ ഹമം ീള ഠവലൃാീറ്യിമാശര). 'എന്‍ട്രോപ്പി' എന്ന ഭൌതിക ഗുണവിശേഷത്തിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. എന്‍ട്രോപ്പി എന്നത് ഒരു വ്യൂഹത്തിന്റെ ക്രമരാഹിത്യത്തിന്റെ (റശീൃറലൃ) അളവാണ്. ഒറ്റപ്പെട്ട (ശീഹമലേറ) ഒരു വ്യൂഹത്തിന്റെ എന്‍ട്രോപ്പി ഒരിക്കലും കുറയുന്നില്ല എന്ന് രണ്ടാം നിയമം അനുശാസിക്കുന്നു. പ്രവൃത്തിയുടെ അഭാവത്തില്‍ താപം താഴ്ന്ന നിലയില്‍നിന്ന് ഉയര്‍ന്ന നിലയിലേക്കു മാറ്റം ചെയ്യപ്പെടുന്നില്ല എന്നും രണ്ടാം നിയമം വ്യവസ്ഥ ചെയ്യുന്നു.
+
'''രണ്ടാം താപഗതിക നിയമം (Second law of thermodynamics).''' 'എന്‍ട്രോപ്പി' എന്ന ഭൗതിക ഗുണവിശേഷത്തിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. എന്‍ട്രോപ്പി എന്നത് ഒരു വ്യൂഹത്തിന്റെ ക്രമരാഹിത്യത്തിന്റെ (disorder) അളവാണ്. ഒറ്റപ്പെട്ട (isolated) ഒരു വ്യൂഹത്തിന്റെ എന്‍ട്രോപ്പി ഒരിക്കലും കുറയുന്നില്ല എന്ന് രണ്ടാം നിയമം അനുശാസിക്കുന്നു. പ്രവൃത്തിയുടെ അഭാവത്തില്‍ താപം താഴ്ന്ന നിലയില്‍നിന്ന് ഉയര്‍ന്ന നിലയിലേക്കു മാറ്റം ചെയ്യപ്പെടുന്നില്ല എന്നും രണ്ടാം നിയമം വ്യവസ്ഥ ചെയ്യുന്നു.
രണ്ടാം നിയമം ഒരു സ്വാഭാവിക പ്രകൃതിനിയമം തന്നെയാണ്. യാന്ത്രിക തുല്യാങ്കവും താപവും തമ്മില്‍ എപ്രകാരം ബന്ധപ്പെട്ടിരിക്കുന്നു എന്നു മാത്രമേ ഒന്നാം നിയമം വെളിപ്പെടുത്തുന്നുള്ളൂ. അല്ലാതെ ഇവയില്‍ ഏതില്‍ നിന്ന് ഏതിലേക്ക് പരിവര്‍ത്തനം നടക്കുന്നു എന്നോ ഈ പരിവര്‍ത്തനത്തിന്റെ പരിധി എന്തെന്നോ ഒന്നും പ്രതിപാദിക്കുന്നില്ല. ഇതിലേക്കുള്ള അന്വേഷണമാണ് രണ്ടാം നിയമത്തിന്റെ രൂപീകരണത്തിനു വഴിതെളിച്ചത്.
രണ്ടാം നിയമം ഒരു സ്വാഭാവിക പ്രകൃതിനിയമം തന്നെയാണ്. യാന്ത്രിക തുല്യാങ്കവും താപവും തമ്മില്‍ എപ്രകാരം ബന്ധപ്പെട്ടിരിക്കുന്നു എന്നു മാത്രമേ ഒന്നാം നിയമം വെളിപ്പെടുത്തുന്നുള്ളൂ. അല്ലാതെ ഇവയില്‍ ഏതില്‍ നിന്ന് ഏതിലേക്ക് പരിവര്‍ത്തനം നടക്കുന്നു എന്നോ ഈ പരിവര്‍ത്തനത്തിന്റെ പരിധി എന്തെന്നോ ഒന്നും പ്രതിപാദിക്കുന്നില്ല. ഇതിലേക്കുള്ള അന്വേഷണമാണ് രണ്ടാം നിയമത്തിന്റെ രൂപീകരണത്തിനു വഴിതെളിച്ചത്.
-
താപഗതികത്തിന്റെ രണ്ടാം നിയമം പലവിധത്തില്‍ പ്രസ്താ വിക്കാവുന്നതാണ്. ഇതില്‍ ക്ളോഷിയസ്സിന്റെ നിര്‍വചനം ഇപ്രകാരമാണ്:  സ്വയം പ്രവര്‍ത്തിക്കുന്ന ഒരു യന്ത്രത്തിന് ബാഹ്യകാരക ത്തിന്റെ സഹായം കൂടാതെ ഒരു വസ്തുവില്‍ നിന്നോ ഒരു ഭാഗത്തുനിന്നോ അതിനേക്കാള്‍ ഉയര്‍ന്ന താപനിലയിലുള്ള ഒന്നിലേക്ക് താപം പകരുവാന്‍ സാധ്യമല്ല. അല്ലെങ്കില്‍ ഒരു തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടു കൂടുതലുള്ള മറ്റൊന്നിലേക്ക് താപം സ്വയം പ്രവഹിക്കുന്നില്ല.”എന്നാല്‍ ബാഹ്യപ്രവൃത്തിയുടെ സഹായത്തോടെ തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടുള്ള വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റുവാന്‍ സാധിക്കും. (കുന്നില്‍ ചുവട്ടില്‍ നിന്ന് മുകളിലേക്ക് വെള്ളം പമ്പ് ചെയ്ത് കയറ്റുന്നതുപോലെ.)
+
താപഗതികത്തിന്റെ രണ്ടാം നിയമം പലവിധത്തില്‍ പ്രസ്താവിക്കാവുന്നതാണ്. ഇതില്‍ ക്ളോഷിയസ്സിന്റെ നിര്‍വചനം ഇപ്രകാരമാണ്:  സ്വയം പ്രവര്‍ത്തിക്കുന്ന ഒരു യന്ത്രത്തിന് ബാഹ്യകാരക ത്തിന്റെ സഹായം കൂടാതെ ഒരു വസ്തുവില്‍ നിന്നോ ഒരു ഭാഗത്തുനിന്നോ അതിനേക്കാള്‍ ഉയര്‍ന്ന താപനിലയിലുള്ള ഒന്നിലേക്ക് താപം പകരുവാന്‍ സാധ്യമല്ല. അല്ലെങ്കില്‍ ഒരു തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടു കൂടുതലുള്ള മറ്റൊന്നിലേക്ക് താപം സ്വയം പ്രവഹിക്കുന്നില്ല.എന്നാല്‍ ബാഹ്യപ്രവൃത്തിയുടെ സഹായത്തോടെ തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടുള്ള വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റുവാന്‍ സാധിക്കും. (കുന്നില്‍ ചുവട്ടില്‍ നിന്ന് മുകളിലേക്ക് വെള്ളം പമ്പ് ചെയ്ത് കയറ്റുന്നതുപോലെ.)
-
താപോര്‍ജം യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനം നടക്കുന്നത് ഏതൊക്കെ നിബന്ധനകള്‍ക്കു വിധേയമായിട്ടാണ് എന്ന് രണ്ടാം നിയമം വിശദീകരിക്കുന്നു. ഈ നിയമപ്രകാരം താപോര്‍ജത്തെ പൂര്‍ണമായും യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനപ്പെടുത്താന്‍ സാധിക്കുകയില്ല. ഒന്നും രണ്ടും താപഗതിക നിയമങ്ങളില്‍ നിന്നാണ് എന്‍ജിനീയറിങ്ങിലെ പ്രധാന താപഗതിക ബന്ധങ്ങള്‍ ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ചക്രീയ (ര്യരഹശര) സ്വഭാവമുളള്ള പ്രക്രിയകളിലൂടെ താപഗതികപ്രക്രിയകളെ വ്യാഖ്യാനിക്കാന്‍ കഴിയുന്നു. താപ എന്‍ജിനുകളുടെ ദക്ഷത (ലളളശരശലിര്യ) 100%-ല്‍ താഴെ ആയിരിക്കുമെന്നും രണ്ടാം നിയമം അനുശാസിക്കുന്നു. രണ്ടാം നിയമത്തേയും ഭൌതികസൈദ്ധാന്തികശാസ്ത്രജ്ഞര്‍ താപഗതികത്തിലെ ഒന്നാം നിയമത്തേയും രണ്ടാം നിയമത്തേയും സംക്ഷിപ്തമായി ഇങ്ങനെയും നിര്‍വചിക്കാറുണ്ട്:  
+
താപോര്‍ജം യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനം നടക്കുന്നത് ഏതൊക്കെ നിബന്ധനകള്‍ക്കു വിധേയമായിട്ടാണ് എന്ന് രണ്ടാം നിയമം വിശദീകരിക്കുന്നു. ഈ നിയമപ്രകാരം താപോര്‍ജത്തെ പൂര്‍ണമായും യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനപ്പെടുത്താന്‍ സാധിക്കുകയില്ല. ഒന്നും രണ്ടും താപഗതിക നിയമങ്ങളില്‍ നിന്നാണ് എന്‍ജിനീയറിങ്ങിലെ പ്രധാന താപഗതിക ബന്ധങ്ങള്‍ ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ചക്രീയ (cyclic) സ്വഭാവമുളള്ള പ്രക്രിയകളിലൂടെ താപഗതികപ്രക്രിയകളെ വ്യാഖ്യാനിക്കാന്‍ കഴിയുന്നു. താപ എന്‍ജിനുകളുടെ ദക്ഷത (efficiency) 100%-ല്‍ താഴെ ആയിരിക്കുമെന്നും രണ്ടാം നിയമം അനുശാസിക്കുന്നു. രണ്ടാം നിയമത്തേയും ഭൌതികസൈദ്ധാന്തികശാസ്ത്രജ്ഞര്‍ താപഗതികത്തിലെ ഒന്നാം നിയമത്തേയും രണ്ടാം നിയമത്തേയും സംക്ഷിപ്തമായി ഇങ്ങനെയും നിര്‍വചിക്കാറുണ്ട്:  
-
  1. ഒന്നാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ ഊര്‍ജം  സുസ്ഥിരമാണ്; അത് കൂടുകയോ കുറയുകയോ ഇല്ല.''”
+
1. ഒന്നാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ ഊര്‍ജം  സുസ്ഥിരമാണ്; അത് കൂടുകയോ കുറയുകയോ ഇല്ല.''
-
  2.  രണ്ടാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ എന്‍ട്രോപ്പി കൂടിക്കൊണ്ടേ ഇരിക്കും.''”
+
2.  രണ്ടാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ എന്‍ട്രോപ്പി കൂടിക്കൊണ്ടേ ഇരിക്കും.''
-
താപ എന്‍ജിന്‍ (ഒലമ ലിഴശില). താപോര്‍ജത്തെ യാന്ത്രികോര്‍ജം (പ്രവൃത്തി) ആയി മാറ്റുന്നതിനുള്ള ഉപാധിയെയാണ് താപ എന്‍ജിന്‍ എന്നു പറയുന്നത്. ഉദാ. ആവി എന്‍ജിന്‍, ആന്തരജ്വലന എന്‍ജിന്‍, ആവി ടര്‍ബൈന്‍. ഒരു താപ എന്‍ജിന് ഉണ്ടായിരിക്കേണ്ട മൂന്ന് ഘടകങ്ങള്‍ താഴെക്കൊടുക്കുന്നു:
+
'''താപ എന്‍ജിന്‍ (Heat engine).''' താപോര്‍ജത്തെ യാന്ത്രികോര്‍ജം (പ്രവൃത്തി) ആയി മാറ്റുന്നതിനുള്ള ഉപാധിയെയാണ് താപ എന്‍ജിന്‍ എന്നു പറയുന്നത്. ഉദാ. ആവി എന്‍ജിന്‍, ആന്തരജ്വലന എന്‍ജിന്‍, ആവി ടര്‍ബൈന്‍. ഒരു താപ എന്‍ജിന് ഉണ്ടായിരിക്കേണ്ട മൂന്ന് ഘടകങ്ങള്‍ താഴെക്കൊടുക്കുന്നു:
-
  1. താപസ്രോതസ്- ഉയര്‍ന്ന താപനിലയില്‍ താപം പ്രദാനം ചെയ്യുന്ന ഒരു തപ്തവസ്തു.
+
1. താപസ്രോതസ്- ഉയര്‍ന്ന താപനിലയില്‍ താപം പ്രദാനം ചെയ്യുന്ന ഒരു തപ്തവസ്തു.
-
  2. സിങ്ക്-അവശിഷ്ട താപം സ്വീകരിക്കുന്ന താഴ്ന്ന താപ നിലയിലുള്ള തണുത്ത വസ്തു.
+
2. സിങ്ക്-അവശിഷ്ട താപം സ്വീകരിക്കുന്ന താഴ്ന്ന താപ നിലയിലുള്ള തണുത്ത വസ്തു.
-
  3. പ്രവര്‍ത്തന വസ്തു-താപസ്രോതസ്സില്‍ നിന്ന് താപം സ്വീകരിച്ച് വികാസം വഴി താപത്തിന്റെ ഒരു ഭാഗം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുത്തുകയും ബാക്കിഭാഗം സിങ്കിലേക്കു തള്ളിക്കളയുകയും ചെയ്യുന്ന വസ്തു.
+
3. പ്രവര്‍ത്തന വസ്തു-താപസ്രോതസ്സില്‍ നിന്ന് താപം സ്വീകരിച്ച് വികാസം വഴി താപത്തിന്റെ ഒരു ഭാഗം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുത്തുകയും ബാക്കിഭാഗം സിങ്കിലേക്കു തള്ളിക്കളയുകയും ചെയ്യുന്ന വസ്തു.
വ്യത്യസ്ത താപനിലകളുള്ള ഒരു സ്രോതസ്സിന്റേയും സിങ്കി ന്റേയും സഹായമില്ലാതെ താപത്തെ പ്രവൃത്തിയായി രൂപാന്തര പ്പെടുത്താന്‍ സാധ്യമല്ല.  
വ്യത്യസ്ത താപനിലകളുള്ള ഒരു സ്രോതസ്സിന്റേയും സിങ്കി ന്റേയും സഹായമില്ലാതെ താപത്തെ പ്രവൃത്തിയായി രൂപാന്തര പ്പെടുത്താന്‍ സാധ്യമല്ല.  
-
താപ എന്‍ജിന്റെ പ്രവര്‍ത്തനം പൊതുവേ മൂന്ന് ഘട്ടങ്ങളിലാ യിട്ടാണു നടക്കുന്നത്.
+
താപ എന്‍ജിന്റെ പ്രവര്‍ത്തനം പൊതുവേ മൂന്ന് ഘട്ടങ്ങളിലായിട്ടാണു നടക്കുന്നത്.
-
  1-ാം ഘട്ടം: താപം ഉണ്ടാക്കല്‍-ഇന്ധനം കത്തിച്ചോ രാസ, ഭൌതിക, ആണവ പ്രക്രിയകളാലോ ഇതു സാധിക്കുന്നു.
+
1-ാം ഘട്ടം: താപം ഉണ്ടാക്കല്‍-ഇന്ധനം കത്തിച്ചോ രാസ, ഭൌതിക, ആണവ പ്രക്രിയകളാലോ ഇതു സാധിക്കുന്നു.
-
  2-ാം ഘട്ടം: താപം ഉപയോഗിച്ച് ദ്രവത്തിന്റെ (ദ്രാവകമോ വാത കമോ) താപനില ഉയര്‍ത്തി മര്‍ദം  വര്‍ധിപ്പിക്കല്‍.
+
2-ാം ഘട്ടം: താപം ഉപയോഗിച്ച് ദ്രവത്തിന്റെ (ദ്രാവകമോ വാത കമോ) താപനില ഉയര്‍ത്തി മര്‍ദം  വര്‍ധിപ്പിക്കല്‍.
-
  3-ാം ഘട്ടം: വര്‍ധിച്ച ഈ മര്‍ദം ഉപയോഗപ്പെടുത്തിക്കൊണ്ട്് ഉപയോഗപ്രദമായ യാന്ത്രിക ചലനങ്ങള്‍ സൃഷ്ടിക്കല്‍.
+
3-ാം ഘട്ടം: വര്‍ധിച്ച ഈ മര്‍ദം ഉപയോഗപ്പെടുത്തിക്കൊണ്ട്് ഉപയോഗപ്രദമായ യാന്ത്രിക ചലനങ്ങള്‍ സൃഷ്ടിക്കല്‍.
-
താപ എന്‍ജിനുകളുടെ പ്രക്രിയ ചക്രീയം (ര്യരഹശര) ആകുന്ന തിനാലാണ് തുടര്‍ച്ചയായി പ്രവൃത്തി ലഭ്യമാകുന്നത്. ഒരു ആദര്‍ശ (ശറലമഹ) താപ എന്‍ജിന്റെ ദക്ഷത (ലളളശരശലിര്യ)???= /ഖഝ = 1 ആയിരിക്കും. എന്നാല്‍ യാഥാര്‍ഥത്തില്‍ ദക്ഷത 1-ലും കുറവായിരിക്കും. സാധാരണ താപ എന്‍ജിനുകളുടെ ദക്ഷത 5% മുതല്‍ 55% വരെ മാത്രമായാണു കണ്ടുവരുന്നത്. സാദി കാര്‍നോ(ടമറശ ഇമൃിീ)യുടെ  പഠനങ്ങള്‍ ഈ രംഗത്ത് ശ്രദ്ധേയമാണ്.
+
താപ എന്‍ജിനുകളുടെ പ്രക്രിയ ചക്രീയം (cyclic) ആകുന്നതിനാലാണ് തുടര്‍ച്ചയായി പ്രവൃത്തി ലഭ്യമാകുന്നത്. ഒരു ആദര്‍ശ (ideal) താപ എന്‍ജിന്റെ ദക്ഷത (efficiency)&eta;= W/JQ = 1 ആയിരിക്കും. എന്നാല്‍ യാഥാര്‍ഥത്തില്‍ ദക്ഷത 1-ലും കുറവായിരിക്കും. സാധാരണ താപ എന്‍ജിനുകളുടെ ദക്ഷത 5% മുതല്‍ 55% വരെ മാത്രമായാണു കണ്ടുവരുന്നത്. സാദി കാര്‍നോ(Sadi Carnot)യുടെ  പഠനങ്ങള്‍ ഈ രംഗത്ത് ശ്രദ്ധേയമാണ്.
-
താപഗതികത്തിന്റെ മൂന്നാം നിയമം (ഠവശൃറ ഹമം ീള ഠവലൃാീ റ്യിമാശര). "താപനില പൂജ്യത്തോട് അടുക്കുമ്പോള്‍ ഏതൊരു സമതാപീയ, ഉത്ക്രമണ പ്രക്രിയയോടു ബന്ധപ്പെട്ടുള്ള എന്‍ട്രോപ്പി വ്യത്യാസവും പൂജ്യത്തോട് അടുക്കുന്നു.'' എന്നതാണ് താപഗതികത്തിന്റെ മൂന്നാം നിയമം. പൂജ്യം കെല്‍വില്‍ താപനില എന്നാല്‍ മര്‍ദവും പൂജ്യമാകണം. ഒരു മാര്‍ഗത്തിലൂടെയും കേവലപൂജ്യം (മയീഹൌലേ ്വലൃീ)എന്ന താപനില കൈവരിക്കാന്‍ കഴിയില്ല എന്നു മൂന്നാം നിയമം അനുശാസിക്കുന്നു. കേവലപൂജ്യം എന്നത് അനന്ത സ്പര്‍ശിയായി മാത്രം എത്തിച്ചേരാന്‍ കഴിയാവുന്ന ഒരു താപനിലയായി മാറുന്നു. അതിനാല്‍ മൂന്നാം നിയമത്തെ മറ്റൊരു രീതിയിലും നിര്‍വചിക്കാറുണ്ട്: 'പരിമിതമായ സംക്രിയകള്‍ കൊണ്ട് ഒരു വ്യൂഹത്തെ കേവലപൂജ്യ താപനിലയിലെത്തിക്കാന്‍ ഏതു പ്രവര്‍ത്തനക്രമം മൂലവും എന്തുമാത്രം ആദര്‍ശപരമാക്കിയതായാലും അസാധ്യമാണ്'. 'കേവലപൂജ്യത്തിന്റെ അപ്രാപ്യതാതത്ത്വം' എന്നും ഈ നിയമത്തെ വിശേഷിപ്പിക്കാറുണ്ട്. താഴ്ന്ന താപനിലാപഠനങ്ങളിലും താപപ്രക്രിയകളുടെ ദിശാനിര്‍ണയനത്തിലും താപഗതികത്തിന്റെ മൂന്നാം നിയമം പ്രയോജനപ്പെടുത്തുന്നു.
+
'''താപഗതികത്തിന്റെ മൂന്നാം നിയമം (Third law of Thermodynamics).''' "താപനില പൂജ്യത്തോട് അടുക്കുമ്പോള്‍ ഏതൊരു സമതാപീയ, ഉത്ക്രമണ പ്രക്രിയയോടു ബന്ധപ്പെട്ടുള്ള എന്‍ട്രോപ്പി വ്യത്യാസവും പൂജ്യത്തോട് അടുക്കുന്നു.'' എന്നതാണ് താപഗതികത്തിന്റെ മൂന്നാം നിയമം. പൂജ്യം കെല്‍വില്‍ താപനില എന്നാല്‍ മര്‍ദവും പൂജ്യമാകണം. ഒരു മാര്‍ഗത്തിലൂടെയും കേവലപൂജ്യം (absolute zero)എന്ന താപനില കൈവരിക്കാന്‍ കഴിയില്ല എന്നു മൂന്നാം നിയമം അനുശാസിക്കുന്നു. കേവലപൂജ്യം എന്നത് അനന്ത സ്പര്‍ശിയായി മാത്രം എത്തിച്ചേരാന്‍ കഴിയാവുന്ന ഒരു താപനിലയായി മാറുന്നു. അതിനാല്‍ മൂന്നാം നിയമത്തെ മറ്റൊരു രീതിയിലും നിര്‍വചിക്കാറുണ്ട്: 'പരിമിതമായ സംക്രിയകള്‍ കൊണ്ട് ഒരു വ്യൂഹത്തെ കേവലപൂജ്യ താപനിലയിലെത്തിക്കാന്‍ ഏതു പ്രവര്‍ത്തനക്രമം മൂലവും എന്തുമാത്രം ആദര്‍ശപരമാക്കിയതായാലും അസാധ്യമാണ്'. 'കേവലപൂജ്യത്തിന്റെ അപ്രാപ്യതാതത്ത്വം' എന്നും ഈ നിയമത്തെ വിശേഷിപ്പിക്കാറുണ്ട്. താഴ്ന്ന താപനിലാപഠനങ്ങളിലും താപപ്രക്രിയകളുടെ ദിശാനിര്‍ണയനത്തിലും താപഗതികത്തിന്റെ മൂന്നാം നിയമം പ്രയോജനപ്പെടുത്തുന്നു.
-
താപഗതിക ഫലനങ്ങള്‍ (ഠവലാീറ്യിമാശര ളൌിരശീിേ). മര്‍ദം, താപനില, വ്യാപ്തം, ദ്രവ്യമാനം (ാമ) എന്നീ നാല് താപഗതിക ഗുണധര്‍മങ്ങളെ മാത്രമേ നേരിട്ട് അളക്കാന്‍ സാധിക്കുകയുള്ളൂ. ആന്തരികോര്‍ജം, എന്‍ട്രോപ്പി മുതലായവ നേരിട്ട് അളക്കാന്‍ പറ്റാത്തവയാണ്. എന്നാല്‍ ഈ രണ്ട് വിഭാഗങ്ങളേയും ബന്ധിപ്പിക്കാന്‍ താപഗതിക ഫലനങ്ങള്‍ക്കു കഴിയുന്നു. മാക്സ് വെല്‍ സമീകരണങ്ങള്‍ (ങമഃംലഹഹ ലൂൌമശീിേ) ആണ് ഇതിനായി സാധാരണ ഉപയോഗിക്കുന്നത്.
+
താപഗതിക ഫലനങ്ങള്‍ (Thermodynamic functions). മര്‍ദം, താപനില, വ്യാപ്തം, ദ്രവ്യമാനം (mass) എന്നീ നാല് താപഗതിക ഗുണധര്‍മങ്ങളെ മാത്രമേ നേരിട്ട് അളക്കാന്‍ സാധിക്കുകയുള്ളൂ. ആന്തരികോര്‍ജം, എന്‍ട്രോപ്പി മുതലായവ നേരിട്ട് അളക്കാന്‍ പറ്റാത്തവയാണ്. എന്നാല്‍ ഈ രണ്ട് വിഭാഗങ്ങളേയും ബന്ധിപ്പിക്കാന്‍ താപഗതിക ഫലനങ്ങള്‍ക്കു കഴിയുന്നു. മാക്സ് വെല്‍ സമീകരണങ്ങള്‍ (Maxwell equations) ആണ് ഇതിനായി സാധാരണ ഉപയോഗിക്കുന്നത്.
-
സാംഖ്യിക താപഗതികം (ടമേശേശെേരമഹ ഠവലാീറ്യിമാശര). ക്ളാസ്സിക്കല്‍ താപഗതികവും തന്മാത്രാസിദ്ധാന്തവും യോജിപ്പി ച്ചുള്ള പഠനമേഖലയാണ് സാംഖ്യിക താപഗതികം. മാക്സ്വെല്‍, ലുഡ്വിഗ്, ബോള്‍ട്സ്മന്‍, ഗിബ്സ് എന്നീ ശാസ്ത്രജ്ഞരാണ് ഈ ശാഖയുടെ പൊതുനിയമങ്ങള്‍ ആവിഷ്കരിച്ചത്. ഗണിതീയ രീതികളെ അവലംബിച്ചാണ് സാംഖ്യിക താപഗതികം നിലനില്ക്കുന്നതെങ്കിലും അതു നല്കുന്ന വിവരങ്ങള്‍ അളക്കാവുന്ന രാശികളെ അടിസ്ഥാനമാക്കിയുള്ളവയാണ്. ആറ്റം, തന്മാത്ര എന്നിവയുടെ ഗുണധര്‍മങ്ങളെക്കുറിച്ചുള്ള അറിവില്‍ നിന്ന് പദാര്‍ഥത്തിന്റെ താപഗതിക ഗുണങ്ങള്‍ കണ്ടെത്താന്‍ ഐന്‍സ്റ്റൈന്‍, ഡിബൈ (ഉലയ്യല), ഗിയാവുക് (ഏശമൌൂൌല) എന്നീ ശാസ്ത്രജ്ഞര്‍ സാംഖ്യിക താപഗതിക സിദ്ധാന്തങ്ങളാണ് പ്രയോജനപ്പെടുത്തിയത്.
+
'''സാംഖ്യിക താപഗതികം (Statistical Themodynamics).''' ക്ളാസ്സിക്കല്‍ താപഗതികവും തന്മാത്രാസിദ്ധാന്തവും യോജിപ്പി ച്ചുള്ള പഠനമേഖലയാണ് സാംഖ്യിക താപഗതികം. മാക്സ്വെല്‍, ലുഡ്വിഗ്, ബോള്‍ട്സ്മന്‍, ഗിബ്സ് എന്നീ ശാസ്ത്രജ്ഞരാണ് ഈ ശാഖയുടെ പൊതുനിയമങ്ങള്‍ ആവിഷ്കരിച്ചത്. ഗണിതീയ രീതികളെ അവലംബിച്ചാണ് സാംഖ്യിക താപഗതികം നിലനില്ക്കുന്നതെങ്കിലും അതു നല്കുന്ന വിവരങ്ങള്‍ അളക്കാവുന്ന രാശികളെ അടിസ്ഥാനമാക്കിയുള്ളവയാണ്. ആറ്റം, തന്മാത്ര എന്നിവയുടെ ഗുണധര്‍മങ്ങളെക്കുറിച്ചുള്ള അറിവില്‍ നിന്ന് പദാര്‍ഥത്തിന്റെ താപഗതിക ഗുണങ്ങള്‍ കണ്ടെത്താന്‍ ഐന്‍സ്റ്റൈന്‍, ഡിബൈ (Debye), ഗിയാവുക് (Giauque) എന്നീ ശാസ്ത്രജ്ഞര്‍ സാംഖ്യിക താപഗതിക സിദ്ധാന്തങ്ങളാണ് പ്രയോജനപ്പെടുത്തിയത്.
-
അനുത്ക്രമണീയ താപഗതികം (കൃൃല്ലൃശെയഹല ഠവലാീറ്യിമാശര). വളരെയേറെ ഗവേഷണം നടക്കുന്ന ആധുനിക ശാസ്ത്രമേഖലകളിലൊന്നാണിത്. സന്തുലിതാവസ്ഥയില്‍ അല്ലാത്ത വ്യൂഹത്തെക്കുറിച്ചുള്ള പഠനമാണ് ഇതിലുള്‍പ്പെടുത്തിയിട്ടുള്ളത്. ഇവിടെ, സമതുലിതാവസ്ഥയിലല്ലാത്ത ബലങ്ങള്‍ വ്യൂഹത്തില്‍ അനുത്ക്രമണീയ പ്രക്രിയകള്‍ നടക്കാന്‍ കാരണമാകുന്നു. അടിസ്ഥാനപരമായി, സന്തുലിതാവസ്ഥയിലുള്ള താപഗതികത്തിന്റെ തത്ത്വങ്ങള്‍ തന്നെയാണ് ഇവിടേയും പ്രയോഗിക്കുന്നതെങ്കിലും ഓരോ ഘടകത്തിനും പ്രത്യേകമായി ഇവ പ്രയോഗിക്കേണ്ടതുണ്ട്. വ്യൂഹത്തിന് സന്തുലിതാവസ്ഥയോട് അടുത്തു നില്ക്കുന്ന സാഹചര്യം ഉണ്ടായിരിക്കുകയും വേണം. നോ: എന്‍ട്രോപ്പി, കാര്‍ണോ ചക്രം, താപം
+
'''അനുത്ക്രമണീയ താപഗതികം (Irreversible Thermodynamics).''' വളരെയേറെ ഗവേഷണം നടക്കുന്ന ആധുനിക ശാസ്ത്രമേഖലകളിലൊന്നാണിത്. സന്തുലിതാവസ്ഥയില്‍ അല്ലാത്ത വ്യൂഹത്തെക്കുറിച്ചുള്ള പഠനമാണ് ഇതിലുള്‍പ്പെടുത്തിയിട്ടുള്ളത്. ഇവിടെ, സമതുലിതാവസ്ഥയിലല്ലാത്ത ബലങ്ങള്‍ വ്യൂഹത്തില്‍ അനുത്ക്രമണീയ പ്രക്രിയകള്‍ നടക്കാന്‍ കാരണമാകുന്നു. അടിസ്ഥാനപരമായി, സന്തുലിതാവസ്ഥയിലുള്ള താപഗതികത്തിന്റെ തത്ത്വങ്ങള്‍ തന്നെയാണ് ഇവിടേയും പ്രയോഗിക്കുന്നതെങ്കിലും ഓരോ ഘടകത്തിനും പ്രത്യേകമായി ഇവ പ്രയോഗിക്കേണ്ടതുണ്ട്. വ്യൂഹത്തിന് സന്തുലിതാവസ്ഥയോട് അടുത്തു നില്ക്കുന്ന സാഹചര്യം ഉണ്ടായിരിക്കുകയും വേണം. നോ: എന്‍ട്രോപ്പി, കാര്‍ണോ ചക്രം, താപം

Current revision as of 06:18, 28 ജൂണ്‍ 2008

താപഗതികം

Thermodynamics

താപം, താപനില എന്നീ ആശയങ്ങളെപ്പറ്റിയും താപവും മറ്റ് ഊര്‍ജരൂപങ്ങളും തമ്മിലുള്ള രൂപാന്തരണത്തെപ്പറ്റിയും പ്രതിപാദിക്കുന്ന ഭൗതികശാസ്ത്രശാഖ. പ്രധാനമായും താപവും യാന്ത്രികോര്‍ജവും (പ്രവൃത്തി) തമ്മിലുള്ള ബന്ധത്തെയാണ് താപഗതികം വിസ്തരിച്ചു പഠനവിധേയമാക്കുന്നത്. താപോര്‍ജം ഏതെല്ലാം തരത്തിലാണ് പദാര്‍ഥങ്ങളുമായി പ്രവര്‍ത്തനങ്ങളില്‍ ഏര്‍പ്പെടുകയെന്നും ഒരു വസ്തുവില്‍നിന്ന് മറ്റൊരു വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റം ചെയ്യപ്പെടുമ്പോള്‍ എന്തു സംഭവിക്കുന്നുവെന്നും താപോര്‍ജം ചലനോര്‍ജമായി പരിവര്‍ത്തനം ചെയ്യപ്പെടുന്നത് എങ്ങനെയെന്നും ഇതില്‍ വിശദീകരിക്കുന്നു. ദ്രവ്യത്തിന്റെ തന്മാത്ര, ആറ്റം, ഇലക്ട്രോണുകള്‍ എന്നീ സൂക്ഷ്മതലങ്ങളിലേക്കൊന്നും കടക്കാതെയുള്ള പഠനമായതുകൊണ്ട് താപഗതികത്തെ ഒരു സ്ഥൂലശാസ്ത്രം (macroscopic science) ആയി പരിഗണിക്കാം. ശാസ്ത്രത്തിന്റെ എല്ലാ ശാഖകളിലും എന്‍ജിനീയറിങ്ങിലും താപഗതിക തത്ത്വങ്ങള്‍ വളരെ പ്രാധാന്യമുള്ളവയാണ്. പെട്രോള്‍ യന്ത്രം, ഡീസല്‍ യന്ത്രം, ആവിയന്ത്രം, ജറ്റ് യന്ത്രം, റോക്കറ്റ് യന്ത്രം എന്നീ വിവിധയിനം താപ എന്‍ജിനുകളിലും ചൂളകള്‍ (furnaces), ശീതീകരണ സംവിധാനങ്ങള്‍, വിവിധയിനം പ്ളാസ്റ്റിക്, രാസവസ്തുക്കള്‍ എന്നിവയുടെ നിര്‍മാണ സജ്ജീകരണങ്ങള്‍ എന്നിവയിലും താപഗതിക തത്ത്വങ്ങള്‍ പ്രയോജനപ്പെടുത്തുന്നുണ്ട്.

p430aa1.png

Image:p430a2.png

താപഗതിക നിയമങ്ങള്‍. എല്ലാ ഭൗതിക പ്രവര്‍ത്തനങ്ങളേയുംപോലെതന്നെ താപചലനവും ചില അടിസ്ഥാന നിയമങ്ങള്‍ക്കു വിധേയമായിട്ടാണു നടക്കുന്നത്. ഈ താപഗതിക നിയമങ്ങള്‍ 19-ാം ശ.-ത്തിലാണ് ആവിഷ്കരിക്കപ്പെട്ടത്. എല്ലാ താപഗതിക പ്രക്രിയകളേയും അവയുടെ പരിമിതികളേയും വിശദീകരിക്കുന്നവയാണ് ഈ നിയമങ്ങള്‍.

താപഗതികത്തിലെ പൂജ്യം നിയമം (Zeroth law of Thermodynamics). താപനില (temperature) എന്നതിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. താപഗതിക നിയമങ്ങളില്‍ ഏറ്റവും അടിസ്ഥാനപരമായിട്ടുള്ളതും ഈ നിയമമാണ്. ഒന്നും രണ്ടും നിയമങ്ങള്‍ കണ്ടുപിടിച്ചതിനുശേഷം മാത്രമാണ് ഈ നിയമം കണ്ടുപിടിക്കപ്പെട്ടത്. എന്നാല്‍ പ്രാധാന്യമനുസരിച്ച് ഇത് ഒന്നും രണ്ടും നിയമങ്ങള്‍ക്കു മുമ്പേ പ്രതിപാദിക്കേണ്ടിവരുന്നു. അതിനാലാണ് പൂജ്യം നിയമം (zeroth law) എന്ന പേരു വന്നത്. റാല്‍ഫ് എച്ച്. ഫൗളര്‍ എന്ന ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞന്‍ 1931-ലാണ് ഈ നിയമം ആവിഷ്കരിച്ചത്.

രണ്ട് വസ്തുക്കള്‍ സന്തുലിതാവസ്ഥയിലായിരിക്കുമ്പോള്‍ അവ ഒരു പൊതുഗുണം ഉള്ളവയായിരിക്കും. അളക്കപ്പെടാവുന്നതും ഒരു നിശ്ചിത അക്കമൂല്യം സംസ്ഥാപിക്കപ്പെടാവുന്നതും ആയിരിക്കും ഈ ഗുണം. അതായത് "സന്തുലിതാവസ്ഥയിലിരിക്കുന്ന രണ്ട് വ്യൂഹങ്ങളില്‍ ഓരോന്നും മൂന്നാമതൊരു വ്യൂഹവുമായി സന്തുലിതാവസ്ഥയിലാണെങ്കില്‍, ആദ്യത്തെ രണ്ട് വ്യൂഹങ്ങളും പരസ്പരം സന്തുലിതാവസ്ഥയിലായിരിക്കും. സന്തുലിതാവസ്ഥയുടെ ഈ പങ്കിടല്‍ഗുണമാണ് 'താപനില' എന്നത്. ഇതാണ് താപഗതികത്തിലെ പൂജ്യം നിയമം (zeroth law). അതായത് വ്യൂഹങ്ങള്‍ A യും B യും സ്വതന്ത്രമായി C എന്ന വ്യൂഹത്തോട് സന്തുലിതാവസ്ഥയിലായിരുന്നാല്‍ A യും B യും താപീയമായി സന്തുലിതാവസ്ഥയിലായിരിക്കും.

TA = Tc യും TB = TC യും ആയാല്‍

TA = TB ആയിരിക്കും.

ഈ നിയമത്തില്‍ താപനില അളക്കുന്നതിനെപ്പറ്റിയും ആ അളവിന്റെ അര്‍ഥമെന്താണ് എന്നതിനെപ്പറ്റിയുമുള്ള അടിസ്ഥാന ആശയങ്ങള്‍ ഉള്‍ക്കൊണ്ടിട്ടുണ്ട്. ഇതില്‍നിന്ന് ഒരു വസ്തുവിന്റെ 'താപനില'എന്നത് ആ വസ്തുവിന്റെ ഒരു ഗുണവിശേഷം ആണെന്നും, മറ്റുള്ള വസ്തുക്കളുമായി ബന്ധപ്പെടുമ്പോള്‍ താപസമതുലിതാവസ്ഥയാണോ താപക്കൈമാറ്റമാണോ ഉണ്ടാകുന്നത് എന്നു നിശ്ചയിക്കുന്നത് ഈ ഗുണവിശേഷം ആണെന്നും മനസ്സിലാക്കാം. ഈ നിയമത്തിലടങ്ങിയിട്ടുള്ള തത്ത്വമാണ് തെര്‍മോമീറ്റര്‍ ഉപയോഗിച്ച് ഒരു വസ്തുവിന്റെ താപനില അളക്കാന്‍ നാം ഉപയോഗപ്പെടുത്തുന്നത്. ഇവിടെ, തെര്‍മോമീറ്ററിലെ ബള്‍ബിന്റേയും വസ്തുവിന്റേയും താപനില ഒന്നുപോലെ ആകുന്നതുവരെ താപപ്രവാഹം നടക്കുന്നു.

ഒന്നാം താപഗതിക നിയമം (first law of Thermodynamics). താപം എന്ന് സര്‍വസാധാരണമായി ഉപയോഗിക്കുന്ന ആശയത്തിന്റെ നിര്‍വചനം നല്കുന്നതാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. റഥര്‍ഫോര്‍ഡ്, ജൂള്‍ തുടങ്ങിയ ശാസ്ത്രജ്ഞര്‍ നടത്തിയ പരീക്ഷണങ്ങളാണ് താപഗതികത്തിലെ ഒന്നാം നിയമത്തിന് അടിത്തറ പാകിയത്. അവരുടെ പരീക്ഷണങ്ങള്‍ W = JH എന്നു തെളിയിച്ചു. ഇതുതന്നെയാണ് ഒന്നാം നിയമവും. J എന്നത് താപത്തിന്റെ യാന്ത്രിക തുല്യാങ്കം (mechanical equivalent of heat) ആണ്. അതായത് 'ഏതെങ്കിലും ഒരു പ്രവൃത്തിയുടെ (W) ഫലമായി താപം (H) ജന്യമാകുകയാണ് എങ്കില്‍ ഓരോ നിശ്ചിത മാത്ര താപമേ ജന്യമാവുകയുള്ളൂ. മറിച്ച്, താപോര്‍ജം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുകയാണ് എങ്കില്‍ എല്ലായ്പ്പോഴും നിശ്ചിത അളവ് താപത്തില്‍ നിന്ന് ഒരു നിശ്ചിത മാത്ര പ്രവൃത്തി മാത്രമേ ജന്യമാവുകയുള്ളൂ'.

സാര്‍വത്രികമായ ഊര്‍ജസംരക്ഷണ നിയമത്തിന്റെ മറ്റൊരു ആവിഷ്കരണം മാത്രമാണ് താപഗതികത്തിന്റെ ഒന്നാം നിയമം. ഈ തത്ത്വപ്രകാരം ഊര്‍ജം നിര്‍മിക്കുവാനോ നശിപ്പിക്കുവാനോ സാധിക്കുകയില്ല. എന്നാല്‍ ഒരു രൂപത്തില്‍ നിന്നു മറ്റൊരു രൂപത്തിലേക്ക് ഊര്‍ജത്തെ മാറ്റിയെടുക്കാം. ഒരു വസ്തുവിന് നാം കൊടുക്കുന്ന താപം സംരക്ഷിക്കപ്പെടുന്നു എന്നു സാരം; രൂപമാറ്റങ്ങള്‍ ഉണ്ടാകാം എന്നു മാത്രം. താപത്തിന്റെ ഏകകം (unit) കലോറിയും പ്രവൃത്തിയുടേയും ഊര്‍ജത്തിന്റെയും ഏകകം എര്‍ഗും ആണ്.

1 കലോറി = 4.186 × 107 എര്‍ഗ്

= 4.186 ജൂള്‍ ആണ്.

എല്ലാ യന്ത്രങ്ങളിലും കുറെയെങ്കിലും ഊര്‍ജം രൂപാന്തരപ്പെട്ടാണ് പ്രവൃത്തി (work) ഉണ്ടാകുന്നത്. ഒന്നാം നിയമം താപത്തെ ഊര്‍ജ ത്തിന്റെ ഒരു രൂപമായി കാണുകയും യാന്ത്രികപ്രവൃത്തിയായി (mechanical work) അതിനെ പരിവര്‍ത്തനപ്പെടുത്തുകയും ശേഖരി ച്ചുവയ്ക്കുകയും ചെയ്യാം എന്ന് അനുശാസിക്കുകയും ചെയ്യുന്നു. ഒരു വ്യൂഹത്തിലേക്കു മാറ്റിയ താപവും പ്രസ്തുത വ്യൂഹത്തില്‍ ചെയ്ത പ്രവൃത്തിയും ചേര്‍ന്ന് വ്യൂഹത്തിന്റെ ആന്തരികോര്‍ജത്തിന്റെ (internal energy) വര്‍ധനവിനു കാരണമാകുന്നു. വ്യൂഹങ്ങള്‍ താപവും പ്രവൃത്തിയുമായി ഊര്‍ജങ്ങള്‍ പരസ്പരം കൈമാറ്റം ചെയ്യുന്നു എന്നു സാരം. ക്ളോഷിയസ് ഒന്നാം നിയമത്തെ ഇപ്രകാരം ക്രോഡീകരിച്ചിരിക്കുന്നു.

dQ = dU +dW

ഇവിടെ dQ നല്കപ്പെടുന്ന താപവും

dU യാന്ത്രികോര്‍ജ മാത്രയിലുള്ള വര്‍ധനവും

dW ചെയ്യപ്പെടുന്ന ബാഹ്യ പ്രവൃത്തിയുമാണ്.

രുദ്ധോഷ്മ വ്യതിയാനമാണെങ്കില്‍, dQ = 0

അതുകൊണ്ട് dU = -dW.

രണ്ടാം താപഗതിക നിയമം (Second law of thermodynamics). 'എന്‍ട്രോപ്പി' എന്ന ഭൗതിക ഗുണവിശേഷത്തിന്റെ നിര്‍വചനം നല്കുന്ന നിയമമാണിത്. എന്‍ട്രോപ്പി എന്നത് ഒരു വ്യൂഹത്തിന്റെ ക്രമരാഹിത്യത്തിന്റെ (disorder) അളവാണ്. ഒറ്റപ്പെട്ട (isolated) ഒരു വ്യൂഹത്തിന്റെ എന്‍ട്രോപ്പി ഒരിക്കലും കുറയുന്നില്ല എന്ന് രണ്ടാം നിയമം അനുശാസിക്കുന്നു. പ്രവൃത്തിയുടെ അഭാവത്തില്‍ താപം താഴ്ന്ന നിലയില്‍നിന്ന് ഉയര്‍ന്ന നിലയിലേക്കു മാറ്റം ചെയ്യപ്പെടുന്നില്ല എന്നും രണ്ടാം നിയമം വ്യവസ്ഥ ചെയ്യുന്നു.

രണ്ടാം നിയമം ഒരു സ്വാഭാവിക പ്രകൃതിനിയമം തന്നെയാണ്. യാന്ത്രിക തുല്യാങ്കവും താപവും തമ്മില്‍ എപ്രകാരം ബന്ധപ്പെട്ടിരിക്കുന്നു എന്നു മാത്രമേ ഒന്നാം നിയമം വെളിപ്പെടുത്തുന്നുള്ളൂ. അല്ലാതെ ഇവയില്‍ ഏതില്‍ നിന്ന് ഏതിലേക്ക് പരിവര്‍ത്തനം നടക്കുന്നു എന്നോ ഈ പരിവര്‍ത്തനത്തിന്റെ പരിധി എന്തെന്നോ ഒന്നും പ്രതിപാദിക്കുന്നില്ല. ഇതിലേക്കുള്ള അന്വേഷണമാണ് രണ്ടാം നിയമത്തിന്റെ രൂപീകരണത്തിനു വഴിതെളിച്ചത്.

താപഗതികത്തിന്റെ രണ്ടാം നിയമം പലവിധത്തില്‍ പ്രസ്താവിക്കാവുന്നതാണ്. ഇതില്‍ ക്ളോഷിയസ്സിന്റെ നിര്‍വചനം ഇപ്രകാരമാണ്: സ്വയം പ്രവര്‍ത്തിക്കുന്ന ഒരു യന്ത്രത്തിന് ബാഹ്യകാരക ത്തിന്റെ സഹായം കൂടാതെ ഒരു വസ്തുവില്‍ നിന്നോ ഒരു ഭാഗത്തുനിന്നോ അതിനേക്കാള്‍ ഉയര്‍ന്ന താപനിലയിലുള്ള ഒന്നിലേക്ക് താപം പകരുവാന്‍ സാധ്യമല്ല. അല്ലെങ്കില്‍ ഒരു തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടു കൂടുതലുള്ള മറ്റൊന്നിലേക്ക് താപം സ്വയം പ്രവഹിക്കുന്നില്ല.എന്നാല്‍ ബാഹ്യപ്രവൃത്തിയുടെ സഹായത്തോടെ തണുത്ത വസ്തുവില്‍ നിന്ന് ചൂടുള്ള വസ്തുവിലേക്ക് താപോര്‍ജം മാറ്റുവാന്‍ സാധിക്കും. (കുന്നില്‍ ചുവട്ടില്‍ നിന്ന് മുകളിലേക്ക് വെള്ളം പമ്പ് ചെയ്ത് കയറ്റുന്നതുപോലെ.)

താപോര്‍ജം യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനം നടക്കുന്നത് ഏതൊക്കെ നിബന്ധനകള്‍ക്കു വിധേയമായിട്ടാണ് എന്ന് രണ്ടാം നിയമം വിശദീകരിക്കുന്നു. ഈ നിയമപ്രകാരം താപോര്‍ജത്തെ പൂര്‍ണമായും യാന്ത്രികോര്‍ജമായി പരിവര്‍ത്തനപ്പെടുത്താന്‍ സാധിക്കുകയില്ല. ഒന്നും രണ്ടും താപഗതിക നിയമങ്ങളില്‍ നിന്നാണ് എന്‍ജിനീയറിങ്ങിലെ പ്രധാന താപഗതിക ബന്ധങ്ങള്‍ ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ചക്രീയ (cyclic) സ്വഭാവമുളള്ള പ്രക്രിയകളിലൂടെ താപഗതികപ്രക്രിയകളെ വ്യാഖ്യാനിക്കാന്‍ കഴിയുന്നു. താപ എന്‍ജിനുകളുടെ ദക്ഷത (efficiency) 100%-ല്‍ താഴെ ആയിരിക്കുമെന്നും രണ്ടാം നിയമം അനുശാസിക്കുന്നു. രണ്ടാം നിയമത്തേയും ഭൌതികസൈദ്ധാന്തികശാസ്ത്രജ്ഞര്‍ താപഗതികത്തിലെ ഒന്നാം നിയമത്തേയും രണ്ടാം നിയമത്തേയും സംക്ഷിപ്തമായി ഇങ്ങനെയും നിര്‍വചിക്കാറുണ്ട്:

1. ഒന്നാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ ഊര്‍ജം സുസ്ഥിരമാണ്; അത് കൂടുകയോ കുറയുകയോ ഇല്ല.

2. രണ്ടാം നിയമം: "ഈ പ്രപഞ്ചത്തിലെ ആകെ എന്‍ട്രോപ്പി കൂടിക്കൊണ്ടേ ഇരിക്കും.

താപ എന്‍ജിന്‍ (Heat engine). താപോര്‍ജത്തെ യാന്ത്രികോര്‍ജം (പ്രവൃത്തി) ആയി മാറ്റുന്നതിനുള്ള ഉപാധിയെയാണ് താപ എന്‍ജിന്‍ എന്നു പറയുന്നത്. ഉദാ. ആവി എന്‍ജിന്‍, ആന്തരജ്വലന എന്‍ജിന്‍, ആവി ടര്‍ബൈന്‍. ഒരു താപ എന്‍ജിന് ഉണ്ടായിരിക്കേണ്ട മൂന്ന് ഘടകങ്ങള്‍ താഴെക്കൊടുക്കുന്നു:

1. താപസ്രോതസ്- ഉയര്‍ന്ന താപനിലയില്‍ താപം പ്രദാനം ചെയ്യുന്ന ഒരു തപ്തവസ്തു.

2. സിങ്ക്-അവശിഷ്ട താപം സ്വീകരിക്കുന്ന താഴ്ന്ന താപ നിലയിലുള്ള തണുത്ത വസ്തു.

3. പ്രവര്‍ത്തന വസ്തു-താപസ്രോതസ്സില്‍ നിന്ന് താപം സ്വീകരിച്ച് വികാസം വഴി താപത്തിന്റെ ഒരു ഭാഗം പ്രവൃത്തിയായി രൂപാന്തരപ്പെടുത്തുകയും ബാക്കിഭാഗം സിങ്കിലേക്കു തള്ളിക്കളയുകയും ചെയ്യുന്ന വസ്തു.

വ്യത്യസ്ത താപനിലകളുള്ള ഒരു സ്രോതസ്സിന്റേയും സിങ്കി ന്റേയും സഹായമില്ലാതെ താപത്തെ പ്രവൃത്തിയായി രൂപാന്തര പ്പെടുത്താന്‍ സാധ്യമല്ല.

താപ എന്‍ജിന്റെ പ്രവര്‍ത്തനം പൊതുവേ മൂന്ന് ഘട്ടങ്ങളിലായിട്ടാണു നടക്കുന്നത്.

1-ാം ഘട്ടം: താപം ഉണ്ടാക്കല്‍-ഇന്ധനം കത്തിച്ചോ രാസ, ഭൌതിക, ആണവ പ്രക്രിയകളാലോ ഇതു സാധിക്കുന്നു.

2-ാം ഘട്ടം: താപം ഉപയോഗിച്ച് ദ്രവത്തിന്റെ (ദ്രാവകമോ വാത കമോ) താപനില ഉയര്‍ത്തി മര്‍ദം വര്‍ധിപ്പിക്കല്‍.

3-ാം ഘട്ടം: വര്‍ധിച്ച ഈ മര്‍ദം ഉപയോഗപ്പെടുത്തിക്കൊണ്ട്് ഉപയോഗപ്രദമായ യാന്ത്രിക ചലനങ്ങള്‍ സൃഷ്ടിക്കല്‍.

താപ എന്‍ജിനുകളുടെ പ്രക്രിയ ചക്രീയം (cyclic) ആകുന്നതിനാലാണ് തുടര്‍ച്ചയായി പ്രവൃത്തി ലഭ്യമാകുന്നത്. ഒരു ആദര്‍ശ (ideal) താപ എന്‍ജിന്റെ ദക്ഷത (efficiency)η= W/JQ = 1 ആയിരിക്കും. എന്നാല്‍ യാഥാര്‍ഥത്തില്‍ ദക്ഷത 1-ലും കുറവായിരിക്കും. സാധാരണ താപ എന്‍ജിനുകളുടെ ദക്ഷത 5% മുതല്‍ 55% വരെ മാത്രമായാണു കണ്ടുവരുന്നത്. സാദി കാര്‍നോ(Sadi Carnot)യുടെ പഠനങ്ങള്‍ ഈ രംഗത്ത് ശ്രദ്ധേയമാണ്.

താപഗതികത്തിന്റെ മൂന്നാം നിയമം (Third law of Thermodynamics). "താപനില പൂജ്യത്തോട് അടുക്കുമ്പോള്‍ ഏതൊരു സമതാപീയ, ഉത്ക്രമണ പ്രക്രിയയോടു ബന്ധപ്പെട്ടുള്ള എന്‍ട്രോപ്പി വ്യത്യാസവും പൂജ്യത്തോട് അടുക്കുന്നു. എന്നതാണ് താപഗതികത്തിന്റെ മൂന്നാം നിയമം. പൂജ്യം കെല്‍വില്‍ താപനില എന്നാല്‍ മര്‍ദവും പൂജ്യമാകണം. ഒരു മാര്‍ഗത്തിലൂടെയും കേവലപൂജ്യം (absolute zero)എന്ന താപനില കൈവരിക്കാന്‍ കഴിയില്ല എന്നു മൂന്നാം നിയമം അനുശാസിക്കുന്നു. കേവലപൂജ്യം എന്നത് അനന്ത സ്പര്‍ശിയായി മാത്രം എത്തിച്ചേരാന്‍ കഴിയാവുന്ന ഒരു താപനിലയായി മാറുന്നു. അതിനാല്‍ മൂന്നാം നിയമത്തെ മറ്റൊരു രീതിയിലും നിര്‍വചിക്കാറുണ്ട്: 'പരിമിതമായ സംക്രിയകള്‍ കൊണ്ട് ഒരു വ്യൂഹത്തെ കേവലപൂജ്യ താപനിലയിലെത്തിക്കാന്‍ ഏതു പ്രവര്‍ത്തനക്രമം മൂലവും എന്തുമാത്രം ആദര്‍ശപരമാക്കിയതായാലും അസാധ്യമാണ്'. 'കേവലപൂജ്യത്തിന്റെ അപ്രാപ്യതാതത്ത്വം' എന്നും ഈ നിയമത്തെ വിശേഷിപ്പിക്കാറുണ്ട്. താഴ്ന്ന താപനിലാപഠനങ്ങളിലും താപപ്രക്രിയകളുടെ ദിശാനിര്‍ണയനത്തിലും താപഗതികത്തിന്റെ മൂന്നാം നിയമം പ്രയോജനപ്പെടുത്തുന്നു.

താപഗതിക ഫലനങ്ങള്‍ (Thermodynamic functions). മര്‍ദം, താപനില, വ്യാപ്തം, ദ്രവ്യമാനം (mass) എന്നീ നാല് താപഗതിക ഗുണധര്‍മങ്ങളെ മാത്രമേ നേരിട്ട് അളക്കാന്‍ സാധിക്കുകയുള്ളൂ. ആന്തരികോര്‍ജം, എന്‍ട്രോപ്പി മുതലായവ നേരിട്ട് അളക്കാന്‍ പറ്റാത്തവയാണ്. എന്നാല്‍ ഈ രണ്ട് വിഭാഗങ്ങളേയും ബന്ധിപ്പിക്കാന്‍ താപഗതിക ഫലനങ്ങള്‍ക്കു കഴിയുന്നു. മാക്സ് വെല്‍ സമീകരണങ്ങള്‍ (Maxwell equations) ആണ് ഇതിനായി സാധാരണ ഉപയോഗിക്കുന്നത്.

സാംഖ്യിക താപഗതികം (Statistical Themodynamics). ക്ളാസ്സിക്കല്‍ താപഗതികവും തന്മാത്രാസിദ്ധാന്തവും യോജിപ്പി ച്ചുള്ള പഠനമേഖലയാണ് സാംഖ്യിക താപഗതികം. മാക്സ്വെല്‍, ലുഡ്വിഗ്, ബോള്‍ട്സ്മന്‍, ഗിബ്സ് എന്നീ ശാസ്ത്രജ്ഞരാണ് ഈ ശാഖയുടെ പൊതുനിയമങ്ങള്‍ ആവിഷ്കരിച്ചത്. ഗണിതീയ രീതികളെ അവലംബിച്ചാണ് സാംഖ്യിക താപഗതികം നിലനില്ക്കുന്നതെങ്കിലും അതു നല്കുന്ന വിവരങ്ങള്‍ അളക്കാവുന്ന രാശികളെ അടിസ്ഥാനമാക്കിയുള്ളവയാണ്. ആറ്റം, തന്മാത്ര എന്നിവയുടെ ഗുണധര്‍മങ്ങളെക്കുറിച്ചുള്ള അറിവില്‍ നിന്ന് പദാര്‍ഥത്തിന്റെ താപഗതിക ഗുണങ്ങള്‍ കണ്ടെത്താന്‍ ഐന്‍സ്റ്റൈന്‍, ഡിബൈ (Debye), ഗിയാവുക് (Giauque) എന്നീ ശാസ്ത്രജ്ഞര്‍ സാംഖ്യിക താപഗതിക സിദ്ധാന്തങ്ങളാണ് പ്രയോജനപ്പെടുത്തിയത്.

അനുത്ക്രമണീയ താപഗതികം (Irreversible Thermodynamics). വളരെയേറെ ഗവേഷണം നടക്കുന്ന ആധുനിക ശാസ്ത്രമേഖലകളിലൊന്നാണിത്. സന്തുലിതാവസ്ഥയില്‍ അല്ലാത്ത വ്യൂഹത്തെക്കുറിച്ചുള്ള പഠനമാണ് ഇതിലുള്‍പ്പെടുത്തിയിട്ടുള്ളത്. ഇവിടെ, സമതുലിതാവസ്ഥയിലല്ലാത്ത ബലങ്ങള്‍ വ്യൂഹത്തില്‍ അനുത്ക്രമണീയ പ്രക്രിയകള്‍ നടക്കാന്‍ കാരണമാകുന്നു. അടിസ്ഥാനപരമായി, സന്തുലിതാവസ്ഥയിലുള്ള താപഗതികത്തിന്റെ തത്ത്വങ്ങള്‍ തന്നെയാണ് ഇവിടേയും പ്രയോഗിക്കുന്നതെങ്കിലും ഓരോ ഘടകത്തിനും പ്രത്യേകമായി ഇവ പ്രയോഗിക്കേണ്ടതുണ്ട്. വ്യൂഹത്തിന് സന്തുലിതാവസ്ഥയോട് അടുത്തു നില്ക്കുന്ന സാഹചര്യം ഉണ്ടായിരിക്കുകയും വേണം. നോ: എന്‍ട്രോപ്പി, കാര്‍ണോ ചക്രം, താപം

താളിന്റെ അനുബന്ധങ്ങള്‍
സ്വകാര്യതാളുകള്‍